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For questions with many sub-questions, please be lenient when grading. If student makes an
algebraic mistake and it propagates to the next parts, only deduct points for the first instance of
the mistake, unless it alters the solution significantly.

Partial credit can be awarded. Physical intuition and good argumentation are worthy of consid-
eration even in the absence of sufficient mathematical support. This can especially be relevant for
problem 5. Do it when you see fit, but try to be consistent as it can be challenging in some cases.
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1. (10 points) Restore equilibrium (10 points)

A wooden plank of length 1m and uniform cross-section is hinged at one end to the bottom of a
tank as shown in figure. The tank is filled with water up to a height 0.5m. The specific gravity
of the plank (or ratio of plank density to water density) is 0.5. Find the angle θ that the
plank makes with the vertical in the equilibrium position (exclude the case θ = 0◦)

Solution:

One could find the net buoyant force by integrating about the point of reference. Or one can
directly use the fact this upthrust force acts at the center of portion submerged in water.

A sample solution:

Three forces will act on the plank-

1. Weight which will act at centre of plank.
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2. Upthrust which will act at centre of submerged portion.

3. Force from the hinge at O.

Notation used: Submerged length = 0.5 sec θ, F = Upthrust, w = Weight

Taking moments of all three forces about point O. Moment of hinge force will be zero.

(Algρ)
l

2
sinθ = A(0.5secθ)(ρw)(g)

(
0.5secθ

2

)
sinθ (1)

Solve to get θ = 45◦
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2. State secrets and the stars (15 points)

In 1949, the physicist G. I. Taylor used publicly released images of the Trinity nuclear test to
estimate the yield of the world’s first atomic bomb (i.e., the energy released by the detonation).
His estimate was stunningly accurate, despite the fact that the number itself was still classified
by the government at the time. In this problem, we will follow a simplified version of his
estimate, and use the procedure to estimate the energy released by the supernovae which end the
lives of massive stars.

Figure 1: A snapshot of the Trinity blast wave 15 milliseconds after the explosion, reproduced from
Taylor’s original paper. A helpful scale bar is included.

(a) (5 points) After a very short moment, the shock front caused by an explosion sweeps up
the material around it, increasing the mass which is blasted outwards. At early times, the
energy E ∼Mv2/2 can be thought of as roughly conserved.

Let R be the radius of the explosion at some time t. Estimate the speed of the shock front
as v ∼ R/t and the swept up mass M ∼ ρR3, where ρ is the density of the surrounding
material (don’t bother to include factors like 4π/3).

Estimate the radius of the explosion R(t) as a function of the energy yield E,
elapsed time t, and the density of the surrounding medium ρ.

(b) (3 points) Air has a density ρ ≃ 1 kgm−3. Using the provided image, roughly estimate
the yield of the Trinity explosion in kilotons (of TNT).

Note that 1 kiloton is equal to approximately 4.2× 1012 J.

(c) (7 points) In 1054, Chinese astronomers observed and documented a supernova which was
bright enough to be visible during the day for around a month. The rubble left behind is a
rapidly expanding supernova remnant called the Crab Nebula, which is intensely studied
today.

The surrounding interstellar medium contains about 1 proton per cubic centimeter—
protons have a mass mp ≈ 1.7 × 10−27 kg. While not perfectly spherical, Crab Nebula
has a radius of roughly 1.7 pc (1 pc = 3.1× 1016m). From this information and the given
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Figure 2: Photographs of the Crab Nebula taken by the Hale Telescope in 1950 (top left) and the
Hubble Space Telescope in 2000 (bottom right).

images of the Crab Nebula from 1950 and 2000, estimate the energy released by the
initial supernova in joules.

Your answer should be close to the typical energy scales of supernovae, which briefly out-
shine their host galaxies and can be seen from across the universe.
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Solutions:

(a) Full points should be awarded to a solution as below up to order unity factors.

The energy of the explosion is E = Mv2/2 ∼ Mv2. Using v ∼ R/t and M ∼ ρR3, the
total energy of the explosion is

E ∼ ρR5

t2
(2)

We can then rearrange this expression as

R(t) ∼
(
E

ρ

)1/5

t2/5 (3)

(b) From the included figure, the explosion looks to be approximately ∼ 100 m in radius at a
time ∼ 15 ms. We can use Equation 2 with the given values to obtain

E ∼ 11 kilotons of TNT (4)

Note that this value may vary significantly depending on the estimated radius from the
figure (since E ∝ R5 depends strongly on R), but should be in the neighborhood of tens
of kilotons of TNT. The official number released by the government at the time was 21
kilotons of TNT, although there has been some uncertainty in this number.

(c) The density of the interstellar medium is

ρ ∼ mp

(1 cm3)
∼ 1.7× 10−21 kg cm−3 (5)

We are given that the Crab Nebula has a radius of approximately 1.7 pc. We see that the
explosion seems to expand by ∼ 25% or so during the fifty years of observation along the
long axis, which we take to be a very rough measure of its velocity. In particular,

v ∼ 25%× 1.7 pc

50 yr
∼ 8.3× 106ms−1 (6)

We can use E ∼Mv2 and M ∼ ρR3 to write

E ∼ ρR3v2 ∼ 1.7× 1043 J (7)

where we have used t ∼ 1000 yr (the age of the supernova remnant). This is E ∼
1.7 × 1050 erg, which is in the neighborhood of true supernovae which are typically at
∼ 1051 erg (a quantity of energy which has been affectionately named the “f.o.e.” by
astrophysicists because of this fact).
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3. Stick a pin there (15 points)

The convex surface of a thin concavo-convex lens of glass of refractive index 1.5 has a radius
of curvature 20 cm. The concave surface has a radius of curvature 60 cm. The convex side is
silvered and placed on a horizontal surface.

(a) (7 points) Where should a pin be placed on the optical axis such that its image is formed
at the same place?

(b) (8 points) If the concave part is filled with water of refractive index 4/3, find the distance
through which the pin should be moved, so that the image of the pin again coincides with
the pin.
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Solutions:

(a) Image of object will coincide with it if ray of light after refraction from the concave surface
fall normally on concave mirror so formed by silvering the convex surface. Or image after
refraction from concave surface should form at centre of curvature of concave mirror or at
a distance of 20 cm on same side of the combination. Let x be the distance of pin from
the given optical system.

Using,

µ2

ν
− µ1

u
=
µ2 − µ1

R
(8)

With proper signs,

1.5

−20
− 1

−x
=

1.5− 1

−60
(9)

Solve to get x = 15 cm

(b) There could be different approaches to solve this. A sample solution:

Now, before striking with the concave surface, the ray is first refracted from a plane surface.
So, let x be the distance of pin, then the plane surface will form its image at a distance
4
3
x(happ = µh) from it.

Using,

µ2

ν
− µ1

u
=
µ2 − µ1

R
(10)

with proper signs,

1.5

−20
− 4/3

−4x/3
=

1.5− 4/3

−60
(11)

Solve to get x = 13.84 cm.

Therefore ∆x = x1 − x2 = 15 cm− 13.84 cm = 1.16 cm (Downwards)
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4. A complex dance (20 points)

In this problem, we will solve a number of differential equations corresponding to very different
physical phenomena that are unified by the idea of oscillation. Oscillations are captured ele-
gantly by extending our notion of numbers to include the imaginary unit number i, strangely
defined to obey i2 = −1. In other words, rather than using real numbers, it is more convenient
for us to work in terms of complex numbers.

Exponentials are usually associated with rapid growth or decay. However, with the inclusion
of complex numbers, imaginary “growth” and “decay” can be translated into oscillations by
the Euler identity:

eiθ = cos θ + i sin θ (12)

(a) (3 points) The usual form of Newton’s second law (F⃗ = ma⃗) breaks down when we go
into a rotating frame, where both the centrifugal and Coriolis forces become important to
account for. Newton’s second law then takes the form

F⃗ = m
(
a⃗+ 2v⃗ × Ω⃗ + Ω⃗× (Ω⃗× r⃗)

)
(13)

For a particle free of forces confined to the x–y plane in a frame which rotates about the z
axis with angular frequency Ω, this becomes the complicated-looking system of differential
equations,

0 = ẍ+ 2Ωẏ − Ω2x

0 = ÿ − 2Ωẋ− Ω2y
(14)

where dots represent time derivatives.

Defining η = x+ iy, show that Equations 14 are equivalent to the following single
(complex) equation:

0 = η̈ − 2iΩη̇ − Ω2η (15)

(b) (3 points) Equation 15 is a version of the damped harmonic oscillator, and can be
solved by guessing a solution η = αeλt.

Plugging in this guess, what must λ be?

(c) (4 points) Using your answer to part (b), and defining α = Aeiϕ where A and ϕ are real,
find x(t) and y(t).

This is the trajectory for a particle which is stationary with respect to the symmetry axis.
While not required for this problem, an additional guess would reveal that η = βteλt is also
a solution.

(d) (3 points) The one-dimensional diffusion equation (also called the “heat equation”) is
given (for a free particle) by

∂ψ

∂t
= a

∂2ψ

∂x2
(16)

A spatial wave can be written as ∼ eikx (larger k’s correspond to waves oscillating on
smaller length scales). Guessing a solution ψ(x, t) = Aeikx−iωt, find ω in terms of k. A
relationship of this time is called a “dispersion relation.”
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(e) (2 points) The most important equation of non-relativistic quantum mechanics is the
Schrödinger equation, which is given by

iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
(17)

Using your answer to part (d), what is the dispersion relation of the Schrödinger
equation?

(f) (2 points) If the energy of a wave is E = ℏω and the momentum is p = ℏk, show that
the dispersion relation found in part (e) resembles the classical expectation for
the kinetic energy of a particle, E = mv2/2.

(g) (3 points) The theory of relativity instead posits that the energy of a particle is given by
E =

√
p2c2 +m2c4. In accordance with this, we can try to guess a relativistic version of

the Schrödinger equation:
1

c2
∂2ϕ

∂t2
− ∂2ϕ

∂x2
+
m2c2

ℏ2
ϕ = 0 (18)

This is called the Klein–Gordon equation. Using the same guess as before, find ω in
terms of k.

Hint: If you are careful, you should find that there is an infinite continuum of energy
states extending down to negative infinity. This apparently mathematical issue hints at
the existence of antimatter, and ultimately demonstrates to us that we must formulate
quantum field theory to properly describe relativistic quantum physics.
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Solutions:

(a) We can write down the equations of motion, multiplying the second one by i:

0 = ẍ+ 2Ωẏ − Ω2x

0 = ÿ − 2Ωiẋ− Ω2iy
(19)

We can add these equations together to obtain

0 = (ẍ+ iÿ) + 2Ω(ẏ − iẋ)− Ω2(x+ iy) = η̈ + 2Ω(ẏ − iẋ)− Ω2η (20)

We note that
ẏ − iẋ = −i(ẋ+ iẏ) = −iη (21)

Then
0 = η̈ − 2iΩη̇ − Ω2η (22)

(b) We can plug in η = αeλt:

0 = λ2αeλt − 2iλΩαeλt − Ω2αeλt (23)

Then we can cancel common factors and find that

0 = λ2 − 2iλΩ− Ω2 = (λ− iΩ)2 (24)

We see that λ = iΩ.

(c) Using our answer to part (b) and α = Aeiϕ, we have

η(t) = Aei(Ωt+ϕ) (25)

Using the Euler identity, we have

x(t) + iy(t) = A cos(Ωt+ ϕ) + iA sin(Ωt+ ϕ) (26)

The real and imaginary parts become

x(t) = A cos(Ωt+ ϕ)

y(t) = A sin(Ωt+ ϕ)
(27)

(d) Consider the given differential equation:

∂ψ

∂t
= a

∂2ψ

∂x2
(28)

We can plug in ψ(x, t) = Aeikx−iωt to find

−iωAeikx−iωt = −k2aAeikx−iωt (29)

so that
ω = −ik2a (30)
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(e) We see that the free Schrödinger equation takes the form of Equation 28, but with

a =
iℏ
2m

(31)

Then, using our answer from part (d), we have

ω =
ℏk2

2m
(32)

(f) We can multiply both sides of the answer to part (e) by ℏ and use E = ℏω and p = ℏk,
we have

E =
p2

2m
(33)

A classical momentum has p = mv, so this gives the classical energy for a free particle
(i.e., one without a potential):

E =
1

2
mv2 (34)

(g) We consider the Klein–Gordon equation:

1

c2
∂2ϕ

∂t2
− ∂2ϕ

∂x2
+
m2c2

ℏ2
ϕ = 0 (35)

We can, as before, plug in a guess ϕ(x, t) = Aeikx−iωt. This yields

−ω
2

c2
Aeikx−iωt + k2Aeikx−iωt +

m2c2

ℏ2
Aeikx−iωt = 0 (36)

Cancelling out common terms, we see that

ω2 = k2c2 +
m2c4

ℏ2
(37)

or

ω = ±
√
k2c2 +

m2c4

ℏ2
(38)

Note that both positive and negative ω solve the Klein–Gordon equation.
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5. Polarization and Oscillation (25 points)

In this problem, we will understand the polarization of metallic bodies and the method of images
that simplifies the math in certain geometrical configurations.

Throughout the problem, suppose that metals are excellent conductors and they polarize sig-
nificantly faster than the classical relaxation of the system.

(a) (1 point) Explain in words why there can’t be a non-zero electric field in a metallic
body, and why this leads to constant electric potential throughout the body.

(b) (2 points) Laplace’s equation is a second order differential equation

∇2ϕ =
∂2ϕ

∂x2
+
∂2ϕ

∂y2
+
∂2ϕ

∂z2
= 0 (39)

Solutions to this equation are called harmonic functions. One of the most important
properties satisfied by these functions is the maximum principle. It states that a
harmonic function attains extremes on the boundary.

Using this, prove the uniqueness theorem: Solution to Laplace’s equation in a volume
V is uniquely determined if its solution on the boundary is specified. That is, if ∇2ϕ1 = 0,
∇2ϕ2 = 0 and ϕ1 = ϕ2 on the boundary of V , then ϕ1 = ϕ2 in V .

Hint: Consider ϕ = ϕ1 − ϕ2.

(c) (4 points) The uniqueness theorem allows us to use “image” charges in certain settings
to describe the system. Consider one such example: There is a point-like charge q at a
distance L from a metallic sphere of radius R attached to the ground. As you argued in
part (a), sphere will be polarized to make sure the electric potential is constant throughout
its body. Since it is attached to the ground, the constant potential will be zero. Place an
image charge inside the sphere to counter the non-uniform potential of the outer charge q
on the surface. Where should this charge be placed, and what is its value?

(d) (1 point) Argue from the uniqueness theorem that the electric field created by this im-
age charge outside the sphere will be the same as the field created by the complicated
polarization of the sphere.

(e) (3 points) Find the force of attraction between the charge and the sphere.
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(f) (14 points) Now suppose that we attach the point-like charge to a wall with a rod of length
a. Any perturbation from the equilibrium will cause a perturbation of the polarization
of the sphere. Prove that this equilibrium is stable and find the frequency of
oscillation around it. The charge and rod have masses m and M , respectively and
assume that L > R + a.
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Solutions:

(a) In conductors, outer electron of each atom are free to move around the body. So if there is
a non-zero electric field inside, this would move those free charges to the surface, at which
point they cannot escape further, and they would accumulate there. This process would
stop when the electric field created by the polarized charges exactly counter the external
electric field inside. Consequently, any external electric field would cause a polarization of
the body that results in a net zero field inside. Since ∇ϕ = −E = 0, we have constant ϕ
inside. From the continuity, it is also constant and equal to ϕinside throughout the surface.

(b) Suppose that we have two potentials satisfying the Laplace’s equation and the boundary
conditions. ∇2ϕ1 = 0, ∇2ϕ2 = 0 and ϕ1 = ϕ2 on the boundary of V . Define ϕ3 = ϕ1 − ϕ2.
By the linearity of Laplace’s equation, ∇2ϕ2 = 0 and ϕ3 = 0 on the surface. By the
maximum principle, all extrema occurs at the surface. Thus, both the minimum and the
maximum of ϕ3 is 0. Therefore, ϕ3 = 0. This concludes the proof that ϕ1 = ϕ2 identically.

(c) Take the origin of our coordinate system at the center of the sphere and align the axes
so that the coordinates of our charge is (x, y) = (L, 0). Now suppose we place an image
charge q0 at (x, 0) where 0 < r < R. Then the potential at the point (Rcosθ,Rsinθ) on
the surface becomes

V (θ) =
q0
xθ

+
q

Lθ

where

xθ =
√
x2 +R2 − 2xR cos θ

Lθ =
√
L2 +R2 − 2LR cos θ

We want this image charge to satisfy V (θ) = 0 ∀ θ ∈ [0, 2π]. Then we have,

q

q0
= −

√
L2 +R2 − 2LR cos θ√
x2 +R2 − 2xR cos θ

= −
√
L

x

√
L2 +R2

L
− 2R cos θ√

x2 +R2

x
− 2R cos θ

Consequently,

L2 +R2

L
=
x2 +R2

x
and

q

q0
= −

√
L

x

Solution to the first equation with x < R condition gives x =
R2

L
, and from the second

equation, q0 can be found as q0 = −qR
L
. By azimuthal symmetry, we conclude that if the
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potential is zero on surface crossing the x − y plane with the image charge q0 = −qR
L

at

x =
R2

L
, then it is zero everywhere throughout the surface.

(d) As argued in part (a), polarization of the sphere would create an equipotential surface.
If we consider the region outside the sphere, the image charge configuration satisfies the
necessary boundary conditions: The inner boundary (surface of the sphere) has equipoten-
tial with ϕ = 0, and the outer boundary (infinity) has zero potential. By the uniqueness
theorem, potentials, and therefore electric fields, created by these different configurations
are exactly the same throughout the volume in question.

(e) From part (d) and (c), this is simply

F =
1

4πϵ0

q2
R

L(
L− R2

L

)2

(f) Force is attractive. Therefore, any deviation from the equilibrium ( θ = 0 ) induces an
attractive torque towards θ = 0.
Force at the equilibrium would be the same as in part (e) with L replaced by L− a. Since
we are looking for small oscillations, we need to calculate the torque in the first order
approximation of θ. Denote β as the angle between the line segment from the center of
the sphere to the particle and from the particle to the wall. Then the equations of motion
become

τ = −F (θ)asin(β) ≈ −F (0)a L

L− a
θ

= I
d2θ

dt2

=

(
m+

M

3

)
a2

d2θ

dt2

Thus it follows that

ω =
q

(L− a)2 −R2

√√√√√ RL

4πϵ0a

(
m+

M

3

)
In the limit a << L, we obtain the formula

ω =
q

L2 −R2

√√√√√ RL

4πϵ0a

(
m+

M

3

)
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