
Physics Unlimited Premier Competition

2020 Onsite Examination Solutions

This exam contains 18 pages (including this cover page) and 5 questions worth 85 points total.

Please be lenient when grading. When a student uses an incorrect result from a previous
subquestion but works out correctly in the later parts, only deduce points for the part
that is incorrect. For example, for a question (a) what is y? (correct: 1) (b) what is y+1?
(correct 2). A students gets (a) y=0 (b) y+1=1; then only deduct points for question (a).
When a competitor gives a correct answer that is different than the answer given here,
or uses a different method than the one we use, please give them scores as you think
fit.
The emphasis here is physics reasoning, not calculation. Every calculation mistake deducts
no more than 1 point, and please deduct no more than 2 points for calculation mistakes in each
subquestion.
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1. Dielectric Fluid (15 points)
Consider a perfectly conducting open-faced cylindrical capacitor with height l, inner radius a
and outer radius b. A constant voltage V is applied continuously across the capacitor by a
battery, and one of the open faces is immersed slightly into a fluid with dielectric constant κ
and mass density ρ. Energy considerations cause the fluid to rise up into the capacitor.

(a) (2 points) What is the total energy stored in the capacitor before any fluid rises as a
function of its height l?

(b) (10 points) How high h does the dielectric fluid rise against the force of gravity g? (Note:
it is very easy to get the correct answer while describing the problem incorrectly. Take
care for full credit.)

(c) (3 points) Calculate the pressure difference P above atmospheric pressure needed to suck
the fluid to the top of the cylinder, assuming this is possible. Assume l � h and neglect
fluid dynamical and thermodynamic effects. You will find that P consists of a term de-
pending on l and a term depending on κ − 1. Provide a physical interpretation of these
terms.

Answer:

1. What is the total energy stored in the capacitor before any fluid rises as a function of its
height l?

Gauss’ law gives E = λ
2πε0r

inside the capacitor. The voltage is then determined by

V = −
∫ a
b
E dr which yields V = λ

2πε0
log(b/a). The capacitance per length is determined

by λ
V

= 2πε0
log(b/a)

, and the energy is found to be

U =
πε0l

log(b/a)
V 2

2. How high h does the dielectric fluid rise against the force of gravity g? (Note: it is very
easy to get the correct answer while describing the problem incorrectly. Take care for full
credit.)

(Because this problem is long, I will put some notes on grading for reference.)
First, I will outline the quick way which gets the right answer but is incorrect. A differential
can be taken of U found previously and then used to find the electrostatic force, which
you then set into equilibrium with the gravitational force. This yields the right answer
provided you fudge the signs as necessary, but it does not a priori give the right sign
(because it is not correct), and indeed without knowing that the liquid would rise it does
not indicate that it should at all. (Up to 5 points can be awarded if this slightly
incorrect force balance approach is taken and all steps are correct.)

The key assumption is that V is held constant, and therefore the capacitor system’s energy
balance is not isolated, and in general you should take into account the work done by the
battery. The total energy is given by U = Ubat + UEM + Ugrav. Ubat = −

∫
V dq = −V Q at

constant V, UEM = 1
2
QV is the energy of the capacitor, and

dUgrav = gy · dm =⇒ Ugrav =
ρgy2π(b2 − a2)

2
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thus,

U = −QV +
1

2
QV +

ρgy2π(b2 − a2)
2

.

Equilibrium is found by minimizing this function, so

0 = −1

2

dQ

dy
V + ρgyπ(b2 − a2).

Now we must determine dQ
dy

as follows. From Gauss’ law,
∫
D · dA = Q. It’s clear from the

symmetry that the E,D fields could only point radially, and that this automatically satis-
fies the boundary condition D⊥1 −D⊥2 = 0 at the air-dielectric boundary. This symmetry
allows us to break up the surface integral

Q =

∫
top part

ε0E · dA+

∫
bottom part

κε0E · dA

to conclude

E =
Q

2πε0r[(κ− 1)y + l]

which satisfies the remaining boundary condition. Then using V = −
∫
Edr,

Q =
2πε0[(κ− 1)y + l]

log(b/a)
V

and therefore

dQ

dy
=

2πε0(κ− 1)

log(b/a)
V

and we conclude

0 =
πε0(1− κ)

log(b/a)
V 2 + ρgyπ(b2 − a2)

which is solved to yield

h =
ε0(κ− 1)V 2

log(b/a)ρg(b2 − a2)
.

(If this approach considering the battery is taken instead of the force balance
approach, up to 6 points can be awarded for the right expression for minimizing
the total energy including the battery, and the remaining 4 points can be
awarded for correctly computing Q, D, etc. and the rest of the solution.)
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3. Consider energy of the overall system. Define A ≡ πε0V 2

log(b/a)
,

Ui =
ρgh2π(b2 − a2)

2
− A[(κ− 1)h+ l]

Uf =
ρgl2π(b2 − a2)

2
− A[(κ− 1)l + l]

so that

W =
ρg(l2 − h2)π(b2 − a2)

2
− A[(κ− 1)l − (κ− 1)h].

This corresponds to work done by gas expanding on the liquid outside the capacitor with
W =

∫
PdV where P is the gauge pressure. Then, assuming the pressure is constant with

volume and neglecting terms of O(h/l),

P =
ρgl

2
− ε0V

2(κ− 1)

(b2 − a2) log(b/a)

P is related to the pressure difference needed to lift an insulating fluid plus the pressure
difference induced by the presence of the dielectric fluid. The above expression is not
exactly accurate as the pressure is not exactly constant, and a more complete treatment
requires some thermodynamics and hydrodynamics. (Full credit on this part can be
awarded as long as the approach is correct and the two terms are given the
appropriate physical explanations.)
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2. Trajectory of a point mass (15 points)
A point mass on the ground is thrown with initial velocity v0 that makes an angle θ with the
horizontal. Assuming that air friction is negligible,

(a) (3 points) What value of θ maximizes the range?

(b) (3 points) What value of θ maximizes the surface area under the trajectory curve?

(c) (4 points) What is the answer for (1), if the point mass is thrown from an apartment of
height h?

Now assume that we have a frictional force that is proportional to the velocity vector, such
that the equation of motion is as follows

dv

dt
= g − βv

(d) (5 points) Supposing that β <<
g

v0
, find the duration of the motion T .

Answer: Throughout the solutions, origin of the coordinate system is taken to be the initial
position of the mass.

1. From the equation of motion
dv

dt
= g we find that v = v0 + gt. Then the position of the

mass after time t is given by r =
∫ t
0

vdt =
∫ t
0
(v0 + gt)dt = v0t+ 1

2
gt2. Denoting the final

time as T and the position as R, we find that

Rey = 0 = v0 sin θT − 1

2
gT 2 (1)

Rex = L = v0 cos θT (2)

where L is the range of the mass. From equations (1) and (2), we get

L =
2v20
g

sin θ cos θ =
v20
g

sin (2θ)

Maximum L is achieved when sin (2θ) = 1. Therefore, θ =
π

4
2. The surface area covered by the trajectory can be found by

A =
1

2

∫
r× dr =

1

2

∫
(r× v)dt

Since the motion occurs in a plane, the surface area is always orthogonal to the plane.
Therefore, the area covered by the trajectory can be found by calculating the magnitude
of the vector A. Now, inserting the equations for the position vector and the velocity as
found in (1), we get

A =
1

2

∫
(r× v)dt =

1

4

∫
(v0 × g)t2dt

=
1

4
(v0 × g)

∫
t2dt

=
1

12
v0 × g)T 3
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As found in (1), T is proportional to sin θ, and v0 × g is proportional to cos θ. Therefore,
the angle that maximizes the area maximizes the function

f(θ) = cos θ sin3 θ

Taking derivative of f(θ), we get the equation

df

dθ
= sin2 θ(3 cos2 θ − sin2 θ)

which gives zero at θ = 0 or θ = arctan
√

3 = π/3. Since θ = 0 corresponds to the minimal
area (no trajectory, A = 0), the answer is θ = π/3

3. If the initial position of the mass is r0 = hey, equation (1) and (2) becomes

Rey = −h = v0 sin θ T − 1

2
gT 2 (3)

Rex = L = v0 cos θ T (4)

Maximum L occurs when
dL

dθ
= 0. Therefore, from (4), we obtain

dL

dθ
= −v0 sin θ + v0 cos θ

dT

dθ
= 0 (5)

Taking derivative of both sides of (3) to find
dT

dθ
and inserting it into (5), we get

0 = v0 cos θ T +
v0 sin θ − gT

cos θ
sin θ T

=⇒ v0 = gT sin θ

Inserting this equation to (3), we obtain

−h =
v20
g
− 1

2

v20
g sin θ

Therefore, the answer is θ = arcsin
( 1√

2

v0√
v20 + gh

)
4. Under the presence of friction, equation of motion for y component becomes

dvy
dt

= −g − βvy (6)

Solving (6), we get

vy = v0y − (v0y +
g

β
)
(
1− e−βt

)
(7)
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y component of the final position vector can be found by integrating vy,

y = 0 = −gT
β

+

(
v0y +

g

β

)
β

(
1− e−βT

)
(8)

Since β is small compared to the dimensions of the system, we can use Taylor expansion
for (8) to find an analytic equation for T .

gT =
(
v0y +

g

β

)(
1− e−βT

)
≈
(
v0y +

g

β

)(
βT − 1

2
β2T 2

)
=⇒ T =

2v0y
βv0y + g

Therefore, the answer is

T =
2v0 sin θ

g

1

1 +
βv0 sin θ

g

which is less than the value found for frictionless trajectory, as expected.
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3. Block on an Incline Plane (20 points)
Consider a block of mass, M, and charge, Q > 0, sliding down an incline plane at an angle α
with the horizontal with initial position (x0, y0). The system is exposed to an upward electric
field given by E(y) = β(y0 − y), with β > 0.

Figure 1: An incline plane submerged in a medium.

(a) (2 points) Find an expression for the ye, the position where the block experiences net zero
vertical force.

(b) (3 points) What is the force acting on the block when it is in contact with the incline
plane?

(c) (3 points) While sliding down the incline plane, at what point will it lose contact with the
plane?

(d) (8 points) What is the velocity vector of the block when it loses contact with the plane?

(e) (4 points) Once the block has lost contact with the plane it begins to oscillate in the water.
What frequency does it oscillate at?

Answer:

1. The block experiences net vertical force when the upward force from the electric field
equals the downward force from gravity,

E(ye) Q = M g

Using our function for E and solving for ye we find, ye = y0 − gM
βQ

.

2. The force acting on the block while on the plane will be the sum of the electromagnetic
force (which is dependent on y) and gravitational force projected onto the plane.

F (y) = (Mg −Qβ(y0 − y)) sin(α)

This force is directed parallel to the plane to the right.
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3. The block will lose contact with the surface at ye. A qualitative answer is sufficient. This
can be seen due to the fact that up until ye the block experiences a force parallel to the
plane and thus stays in contact with the plane. Suddenly, as it passes ye, it begins to
experience and upward force due to the electric field surpassing gravity in its asserted
force. At this point the block begins to peel away from the incline plane.

4. To find the velocity vector we find the work done by the force vector on the block up until
ye. At ye we realize that the system has zero potential energy since the net force on the
block is zero. We can then treat the total work as kinetic energy at that moment and
calculate the magnitude of the velocity.

W =

∫ y0−ye

0

(Mg −Qβ(y0 − y)) dy = Mg(y0 − ye)−
Qβ

2
(y20 − y2e)

Velocity is then found by, W = K = 1
2
Mv2,

v =

√
2g(y0 − ye)−

Qβ

M
(y20 − y2e)

The velocity vector is then given by,

~v =

√
2g(y0 − ye)−

Qβ

M
(y20 − y2e) · 〈cos(α),−sin(α)〉

5. After the block has left the incline, consider a displacement around ye, ∆y = ye −
y. We can write the force experienced by the block as a function of ∆y, F (∆y) =
(Mg −Qβ(y0 − y)) = (Mg −Qβ(y0 − ye + ∆y)). Using our value for ye, we have, F (∆y) =(
Mg −Qβ(gM

βQ
+ ∆y)

)
. Thus we have F (∆y) = −(βQ)∆y. Noting that (βQ) is constant,

we see that this is an example of Hookes’ Law and know that the frequency must be given
by,

f =
1

2π

√
βQ

m
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4. Lorentz Boost (25 points)
In Newtonian kinematics, inertial frames moving relatively to each other are related by the
following transformations called Galilean boosts :

x′ = x− vt
t′ = t

In relativistic kinematics, inertial frames are similarly related by the Lorentz boosts :

x′ =
1√

1− v2/c2
(x− vt)

t′ =
1√

1− v2/c2
(t− v

c2
x).

In this problem you will derive the Lorentz transformations from a minimal set of postulates:
the homogeneity of space and time, the isotropy of space, and the principle of relativity. You
will show that these assumptions about the structure of space-time imply either (a) there is
a universal ”speed limit” which is frame invariant, which results in the Lorentz boost, or (b)
there is no universal ”speed limit,” which results in the Galilean boost. For simplicity, consider
a one-dimensional problem only. Let two frames F and F ′ be such that the frame F ′ moves at
relative velocity v in the positive-x direction compared to frame F. Denote the coordinates of
F as (x, t) and the coordinates of F ′ as (x′, t′).

The most general coordinate transformations between F and F ′ are given by functions X,T,

x′ = X(x, t, v)

t′ = T (x, t, v)

which we will refer to as the generalized boost.

(a) (3 points) The homogeneity of space and time imply that the laws of physics are the same
no matter where in space and time you are. In other words, they do not depend on a choice
of origin for coordinates x and t. Use this fact to show that ∂X

∂x
is independent of the position

x and ∂T
∂t

is independent of the time t. (Hint: Recall the definition of the partial derivative.)

Analogously, we can conclude additionally that ∂X
∂x

is independent of both x and t and ∂T
∂t

is
independent of x and t. It can be shown that X,T may be given in the form

X(x, t, v) = A(v)x+B(v)t

T (x, t, v) = C(v)x+D(v)t (9)

where A,B,C,D are functions of v. In other words, the generalized boost is a linear transfor-
mation of coordinates.

(b) (3 points) The isotropy of space implies that there is no preferred direction in the universe,
i.e., that the laws of physics are the same in all directions. Use this to study the general
coordinate transformations X,T after setting x → −x and x′ → −x′ and conclude that
A(v), D(v) are even functions of v and B(v), C(v) are odd functions of v. (Hint: the
relative velocity v is a number which is measured by the F frame using v = dx

dt
.)

Page 10 of 18



November 15, 2020

(c) (3 points) The principle of relativity implies that the laws of physics are agreed upon
by observers in inertial frames. This implies that the general coordinate transformations
X,T are invertible and their inverses have the same functional form as X,T after setting
v → −v. Use this fact to show the following system of equations hold:

A(v)2 −B(v)C(v) = 1

D(v)2 −B(v)C(v) = 1

C(v)(A(v)−D(v)) = 0

B(v)(A(v)−D(v)) = 0.

(Hint: It’s convenient to write X,T as matrices and recall the definition of matrix inverses.)
Physically, we must have that B(v) and C(v) are not both identically zero for nonzero v.

So, we can conclude from the above that D(v) = A(v) and C(v) = A(v)2−1
B(v)

.

(d) (2 points) Use the previous results and the fact that the location of the F ′ frame may be
given by x = vt in the F frame to conclude that the coordinate transformations have the
following form:

x′ = A(v)x− vA(v)t

t′ = −
(
A(v)2 − 1

vA(v)

)
x+ A(v)t

(e) (3 points) Assume that a composition of boosts results in a boost of the same functional
form. Use this fact and all the previous results you have derived about these generalized
boosts to conclude that

A(v)2 − 1

v2A(v)
= κ.

for an arbitrary constant κ.

(f) (1 point) Show that κ has dimensions of (velocity)−2, and show that the generalized boost
now has the form

x′ =
1√

1− κv2
(x− vt)

t′ =
1√

1− κv2
(t− κvx)

(g) (2 points) Assume that v may be infinite. Argue that κ = 0 and show that you recover the
Galilean boost. Under this assumption, explain using a Galilean boost why this implies
that a particle may travel arbitrarily fast.

(h) (3 points) Assume that v must be smaller than a finite value. Show that 1/
√
κ is the max-

imum allowable speed, and that this speed is frame invariant, i.e., dx′

dt′
= dx

dt
for something

moving at speed 1/
√
κ. Experiment has shown that this speed is c, the speed of light.

Setting κ = 1/c2, show that you recover the Lorentz boost.

For the next few sections we are going to plot the Lorentz boost.
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(i) (1 point) Verify that the spacetime distance is frame invariant under Lorentz boost: c2t2−
x2 = c2t′2 − x′2.

(j) (2 points) Assume 0 < v < c, draw qualitatively the spacetime distance invariant curve
c2t2−x2 = −l2 and the ct′, x′ axis in ct−x graph. (Hint: ct′ axis is no longer perpendicular
to x′ axis. Let t′ = 0 and x′ = 0 respectively and draw the resulting lines.)

Figure 2: You can draw your answers in any of the graphs provided. Be sure to label your answers
properly. You can add some additional explanation if you deem necessary. The points are labeled
by (ct-coordinate, x-coordinate) and the vertical axis is ct.

(k) (2 points) Assume there is a one dimensional ruler of length L lying on x-axis that extends
from (0, 0) to ~p = (0, L) in ct−x frame. The ruler’s spacetime trajectory is shown in fig 3.
Show that if we measure at t′ = 0 in ct′−x′ frame, the line seems to be shorter by drawing
a graph. In other words, the ruler’s endpoints have coordinates (0, 0) and (0, x′1) in ct′−x′
frame, with x′1 < L. (Hint: use the spacetime distance invariant curve to determine where
x′ = l is in ct′ − x′ frame.)

Answer: Ref: https://arxiv.org/abs/physics/0302045v1

1. The homogeneity of space implies the following:

X(x2 + h, t, v)−X(x2, t, v) = X(x1 + h, t, v)−X(x1, t, v)
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Figure 3: The shaded area is the ruler’s trajectory in spacetime. Any measurement of its length
must intersect the shaded area.
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now dividing by h and sending h→ 0 is the partial derivative, therefore

∂X

∂x

∣∣∣∣∣
x2

=
∂X

∂x

∣∣∣∣∣
x1

.

The same method is repeated for the other variables.

2. The isotropy of space implies

X(−x, t,−v) = −x′ = −X(x, t, v)

T (−x, t,−v) = T (x, t, v)

and then plugging into (9) we see that

A(−v) = A(v)

B(−v) = −B(v)

C(−v) = −C(v)

D(−v) = D(v)

3. The principle of relativity implies that the coordinate transformation can be inverted such
that

X(x′, t′,−v) = x

T (x′, t′,−v) = t

therefore, because X,T are linear, we can write the generalized boost in matrix form, and
then using the even/oddness of A,B,C,D derived previously(

A(v) B(v)
C(v) D(v)

)(
A(v) −B(v)
−C(v) D(v)

)
=

(
1 0
0 1

)
which is precisely the system of equations listed.

4. The F ′ frame is defined by x′ = 0, therefore A(v)x + B(v)t = A(v)vt + B(v)t plugging
in the equation x = vt. This implies that Av + B = 0. This let’s all the undetermined
functions A,B,C,D to be solved in terms of A.

5. Consider a frame F ′′ related to F ′ by a boost in the x′-direction with relative velocity u.
Therefore, the composition of these two boosts results in a boost F → F ′′ given by

ΛF→F ′′ =

(
A(u) −uA(u)

−A(u)2−1
uA(u)

A(u)

)(
A(v) −vA(v)

−A(v)2−1
vA(v)

A(v)

)
.

Multiplying out these matrices and noting that we have shown that the diagonal terms
must be equal, we find that

A(v)2 − 1

v2A(v)2
=
A(u)2 − 1

u2A(u)2

as the left hand side is a function of v only and the right hand side is a function of u only,
they must both be equal to some constant κ.
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6. Solve for A,

A(v) =
1√

1− κv2

and the dimensions of κ are determined by the restriction that κv2 is being added to a
dimensionless number. Substituting this form of A(v) into

x′ = A(v)x− vA(v)t

t′ = −
(
A(v)2 − 1

vA(v)

)
x+ A(v)t

yields the answer.

7. If v is unbounded and κ 6= 0, it may be large enough so that the square root gives an
imaginary number, and as x′, t′ cannot be imaginary, it must be that κ = 0. There is
nothing stopping a particle from traveling arbitrarily fast under a Galilean structure of
spacetime, as given any particle we may Galilean boost to an inertial frame moving at v
arbitrarily fast, in which the particle is then moving at −v. By the principle of relativity,
there is nothing wrong with doing physics in this frame, so it must be that it is acceptable
to have particles move arbitrarily fast.

8. Again by requiring that x′, t′ are real, we can find the desired bound on v from 1−κv2 > 0.
One way to show that the speed is frame invariant is by deriving the relativistic velocity
addition formula as follows

dx′ = γ(dx− vdt)
dt′ = γ(dt− v/c2dx)

and dividing to yield

dx′

dt′
=

dx
dt
− v

1− v
c2
dx
dt

.

Let w = dx′/dt′, u = dx/dt, and, as often makes relativity problems easier to deal with,
set c = 1 (this is equivalent to choosing a new system of units). Then, we have

w =
u− v
1− vu

now if w = c = 1, we can solve the above equation to show that u = 1, in other words
frame F and F ′ both agree on what velocities move at c.

9. Put in the Lorentz transformation equations and the result is obvious.

10. See fig 4. At t′ = 0, OA is the measured length in ct′, x′ frame. OB is has length L in
ct′, x′ frame because it is on the curve c2t′2−x′2 = c2t2−x2 = −L2 with t′ = 0. OA < OB.
Be careful that the Lorentz transformation extends/contracts the axes so we must use
spacetime distance invariant curves to calibrate the axes.
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Figure 4: Answers for section 10 and 11.
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5. Identifying particle processes (10 points)
Note: all numerical values in this problem are given in natural units: c = 1, mass measured in
GeV = 1, so no unit conversions are necessary, even when dimensions don’t seem to align (this
allows us to do things like sum momentum and energy without worrying about units).
The 4-momentum of a relativistic particle is the 4-dimensional vector

~P = (E, px, py, pz),

where E is the particle’s energy and (px, py, pz) is the standard 3-momentum (excluding the
time component). The total (summed) 4-momentum of a system is always conserved. The
components of 4-momentum can be related to the rest mass m of the particle by

E2 = m2 + p2x + p2y + p2z.

A particle accelerator records the 4-momenta of 2 muon-antimuon pairs produced by some
particle processes. Other particles produced by the processes are not measured by the de-
tector. Below are two possible processes that involve muon-antimuon production and down
quark-antiquark production. We know that out of the two measured 4-momentum pairs, one
corresponds to Process A and the other to Process B. Using the muon-antimuon 4-momenta
given below, determine which corresponds to each process. The numbers will be truncated for
simplicity and slightly fudged from precise values to account for some small error in the mea-
surement, so don’t expect precision for small values (this should not affect the problem). The
points will be given for an explanation of how you reached your conclusion; simply guessing the
process correctly will result in at most one point. Also note that both processes are valid, you
do not need to verify that they could actually happen. A table of (mean) particle rest masses
may prove useful:

Particle Rest Mass
Higgs ∼ 125

Z ∼ 91
Top ∼ 172

Bottom ∼ 4.2
Up ∼ 0.0024

Muon ∼ 0.1
Neutrino ∼ 0

Process A: The collision of an up quark-antiquark pair results in the production of one Higgs
boson and one Z boson. The Z boson then decays into a muon-antimuon pair.
Process B: The collision of an up quark-antiquark pair results in the production of a top
quark-antiquark pair. The top quark decays into a W+ boson and a bottom quark, while the
anti-top decays into a W- boson and an anti-bottom quark. The W- then decays into a muon
and an anti-neutrino, while the W+ decays into an anti-muon and neutrino.

Detected muon-antimuon 4-momenta:
x) (149.0, 12.6, -8.8, 148.2); (163.7, -38.8, 67.3, 144.1)
y) (319.5, -41.3, -24.2, 315.8); (305.3, -60.1, 25.0, 298.1)
Acknowledgement: 4-momenta generated using MadGraph 5 Monte Carlo
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Answer: The sum of the muon-antimuon momenta are:
x) (312.7, -26.2, 58.5, 292.3)
y) (624.8, 101.4, 0.8, 613.2)
For the one that corresponds to Process A, this 4-momentum would correspond to the 4-
momentum of the Z boson. This summed 4-momentum from Process B should not correspond
to any particular particle, as the muon-antimuon pair decays off of two different particles. Ap-
plying the relation between the 4-momentum and the rest mass, we find that each 4-momentum
would correspond to a Z with rest mass of:
x) 90.74
y) 63.86
The mass in x) is much closer to the true mean Z mass, so that should be process A, and y) is
process B.
Rubric:
Doing anything with the correct total 4-momentum: +4
Using the 4-momentum to get the corresponding masses: +5
Getting the right answer: +1
Arithmetic mistakes on any of these steps (provided the thought process is correct): -1 per error
There might be other valid solutions, give points if they’re correct.
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