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Student teams will have a total of up to two weeks to work on the 2021 Explorer Competition,
and teams registering later than the assignment release date may begin to work at any time.
For successful completion of this assignment, we recommend that teams set aside at least 10
hours of time, cumulatively. Please refer to the submission explanation below for details on
both formatting and the submission process.

Scoring

Students are encouraged to work on as much of the assignment as possible. The award structure
will be as follows:

1. Certificate awards will be given to the four teams with the highest scores, per scoring
rubric that would allocate points for questions and exercises based on their difficulty level
as determined by the assignment creator.

2. There will be medalist certificates granted for first place, second place, and third place,
respectively.

3. There will be an honorable mention certificate granted to the fourth-highest scoring sub-
mission.

Collaboration Policy and External Resources

Students participating in the competition may only correspond with members of their
team. Absolutely and unequivocally, no other form of human correspondence is allowed.
This includes any form of correspondence with mentors, teachers, professors, and other students.
Participating students are barred from posting content or asking questions related to the exam
on the internet (except where specified below), and moreover, they are unequivocally barred
from seeking the solution to any of the exams’ parts from the internet or another resource.
Students are allowed, however, to use the following resources for purposes of reference and
computation:
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• Internet: Teams may use the internet for purposes of reference with appropriate citation.
Again, teams are in no way allowed to seek the solution to any of the exams’ parts from
the internet. For information about appropriate citation, see below.

• Books and Other Literature: Teams may use books or other literature, in print or
online, for purposes of reference with appropriate citation. As with the use of the Internet,
teams are in no way allowed to seek the solution to any of the exams’ parts from books
or other literature.

• Computational Software: Teams may use computational software, e.g. Mathematica,
Matlab, Python, whenever they deem it appropriate. Of course, teams must clearly
indicate that they have used such software. Additionally, the judges reserve to right to
deduct points for the use of computational software where the solution may be obtained
simply otherwise.

Citation

All student submissions that include outside material must include numbered citations. We do
not prefer any style of citation in particular.

Submission

All submissions, regardless of formatting, should include a cover page listing the title of
the work, the date, and electronic or scanned signatures of all team participants.
The work must be submitted as a single PDF document with the “.pdf.” extension. All other
formatting decisions are delegated to the teams themselves. No one style is favored over another.
That being said, we recommend that teams use a typesetting language (e.g. LATEX) or a word-
processing program (e.g. Microsoft Word, Pages). Handwritten solutions are allowed, but
we reserve the right to refuse grading of any portion of a team’s submission in the
case that the writing or solution is illegible.

All teams must submit their solutions document to the 2021 Explorer Competition by emailing
directors@physicsu.org by 11:59 pm Eastern Time (UTC-5) on Sunday, March 21,
2021. Teams will not be able to submit their solutions to the Explorer Competition at any later
time. The team member who submitted the team registration form should send the submission;
in case they are unable to, another team member may do so. The title of the submission e-mail
should be formatted as “PUEC 2021 SUBMISSION - Team Name”, without quotation
marks, where Team Name is to be replaced with your actual team’s name, as registered. All
teams may make multiple submissions. However, we will only read and grade the most
recent submission submitted before the deadline. Teams will receive confirmation once
their submission has been received within at most two days. In the case of extraordinary
circumstances, please contact us as soon as possible.
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Learning Goals

Through the course of this assignment, you will learn some basic concepts and ideas about
quantum mechanics and apply it to consider principles of designing a type of laser called a
quantum-cascade laser. We want you to get an idea of the way fundamental physics concepts
form the foundations of modern, cutting-edge technologies, and for you to see that even a little
bit of physics knowledge can help you understand these devices a whole lot better.

Those of you who have worked on the 2018 Explorer assignment or looked over it while reviewing
might find some of the content familiar. However, rest assured each question will be different.
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Topic Format and Grading

This document consists of a few sections of expository material with exercises and questions
interspersed along that lead you to considering several ideas related to laser design. Exercises
will typically ask students to mathematically derive or demonstrate a result useful to the dis-
cussion. Questions will ask students to, in their own words, interpret stated results. We are
looking to see how well you understand the subject, so to receive full credit, all work shown
must be complete and properly justified.

Expected Amount of Work

Do not expect to understand the concepts in this document after only one read through; these
concepts take time to absorb. While it may feel like you are not getting much accomplished
as you try to understand the reading, persevere. It may be necessary to read some passages
several times in a row before understanding them completely. Because there are not too many
questions in this document, you should have time to complete the readings. We have made
every attempt to be rigorous in our presentation, but simplifications have been made when
appropriate. Students are welcome to investigate the subject in more detail outside of this
document.

I Schrodinger’s Equation

I.1 Introduction to Schrodinger’s Equation

In classical mechanics, we describe the state of a particle using its position, velocity, acceleration,
momentum, kinetic energy, and more. Classical mechanics says a particle has absolute, precise
values for all of these quantities, and that in theory one could measure them all and know them
all at the same time.

Quantum mechanics, on the other hand, describes the state of a particle using its wavefunction,
Ψ(~r, t). If the particle is confined to the x axis, then this simplifies to Ψ(x, t). Ψ(x, t) must
satisfy Schrodinger’s equation:

i~
∂Ψ(x, t)

∂t
= − ~2

2m

∂2Ψ(x, t)

∂x2
+ VΨ(x, t) (1)

where V is the potential energy of the system and ~ = h/(2π) = 1.054572 ∗ 10−34 J

Ψ(x, t) can tell you many things about the system. For instance, the probability of finding the
particle between positions x = a and x = b (for a particle moving only in the x direction) at
time t is given by

p(x is between a and b) =

ˆ b

a

∣∣Ψ(x, t)
∣∣2 dx

and
∣∣Ψ(x, t)

∣∣2 gives the probability of finding the particle at point x at time t. In order to ensure
that this is giving the probability, we must make sure that the sum of all the probabilities (or
the integral, for continuous variables) adds up to 1 over all of space. In other words,ˆ ∞

−∞

∣∣Ψ(x, t)
∣∣2 dx = 1 (2)

When Ψ(x, t) fulfills this condition, we say it is properly normalized. Since the wavefunction
can give us probabilities, we can use it to calculate expectation values. In probability, we can
generalize the mean by using probability distributions. For example, if three people had the
following ages: 23, 23, 24, then the mean age ā would be

ā =
23 + 23 + 24

3
=

1

3
(23 + 23) +

1

3
(24) =

2

3
∗ 23 +

1

3
∗ 24 = 23.3̄3
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where the bar over the a is frequently used to denote averages. As you can see above, we were
able to write the average in terms of the expression

ā =

∞∑
j=0

jP (j) where P (j) =


2/3 j = 23

1/3 j = 24

0 j 6= 23, 24

We can generalize this sum for non-integers as well, and for continuous variables we would
have integrals. In quantum mechanics, these averages are called expectation values, and are
denoted as

〈
b
〉

for a variable b. For instance, for the continuous variable x, the average position〈
x
〉

of a system in state Ψ(x, t) would be

〈
x
〉

=

ˆ ∞
−∞

x
∣∣∣Ψ(x, t)

∣∣∣2 dx =

ˆ ∞
−∞

Ψ∗(x, t)xΨ(x, t)

The first half of the equality simply generalizes what we know about expectation values as sums
weighted by the probabilities of a given outcome. The second half rewrites∣∣∣Ψ(x, t)

∣∣∣2 = Ψ∗(x, t)Ψ(x, t)

since Ψ((x, t) can be complex in general, and then sandwiches the x in between Ψ∗(x, t) and
Ψ(x, t). In general, the right-hand side of the equality is how we want to write out expectation
values. This is because in general, we will take expectation values of operators, which may or
may not contain operations like derivatives that will act on Ψ(x, t). For example, if we want to
find the expectation value of momentum, we would write

〈
p
〉

= m
d
〈
x
〉

dt
= m

ˆ ∞
−∞

x
∂

∂t

∣∣∣Ψ∣∣∣2 dx
and then we can use the original time-dependent Schrodinger equation, Equation (1), to write

〈
p
〉

= m

ˆ ∞
−∞

x
∂

∂t

∣∣∣Ψ∣∣∣2 dx =
i~
2

ˆ ∞
−∞

x
∂

∂x

(
Ψ∗

∂Ψ

∂x
− ∂Ψ∗

∂x
Ψ
)
dx =

ˆ ∞
−∞

Ψ∗
(
−i~ ∂

∂x

)
Ψ dx (3)

I will skip over the mathematical details used in the intermediary stages of the equation above
used to get to the right-hand side, which involve integration by parts. At risk of incurring your
wrath, the proof of this result will be left as an exercise to the reader, as you will see in the
Exercises section for this section. Hopefully, however, this is enough of an illustration to show
why we must write expectation values as

〈
Ô
〉

=

ˆ ∞
−∞

Ψ∗(x, t)ÔΨ(x, t) dx

instead of ˆ ∞
−∞

Ô
∣∣∣Ψ(x, t)

∣∣∣2 dx
The ˆ above the O denotes an operator, which is a general expression used to denote an
observable and can contain operations such as derivatives that act on a wavefunction. For
instance, going back to the specific case of momentum, Equation (3) tells us that

p̂ = −i~ ∂
∂x
,
〈
p̂
〉

=

ˆ ∞
−∞

Ψ∗(x, t)

(
−i~ ∂

∂x

)
Ψ(x, t) dx (4)

In the case of x, we simply have the operator x̂ = x, which is consistent with our expression for〈
x
〉
.
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Finally a distribution of values also has a certain spread, called the standard deviation, that
quantifies an average of how much each value deviates from the mean value of the distribution.
We can write this as

σ ≡
√〈(

j −
〈
j
〉)2〉

so that σ2 =
〈(
j −

〈
j
〉)2〉

where σ2 is called the variance. You will prove in one of the exercises that

σ2 ≡
〈(
j −

〈
j
〉)2〉

=
〈
j2
〉
−
〈
j
〉2

(5)

Thus, we can calculate not only the expectation values of operators like x̂ and p̂, but we can
also calculate their standard deviations σx and σp and see how much uncertainty there is. For
example, writing variances to reduce notational clutter from square root symbols

σ2
x =

ˆ ∞
−∞

Ψ∗(x, t)x2Ψ(x, t) dx−
(ˆ ∞
−∞

Ψ∗(x, t)xΨ(x, t) dx

)2

(6)

σ2
p =

ˆ ∞
−∞

Ψ∗(x, t)

(
−i~ ∂

∂x

)2

Ψ(x, t) dx−
(ˆ ∞
−∞

Ψ∗(x, t)

(
−i~ ∂

∂x

)
Ψ(x, t) dx

)2

(7)

In quantum mechanics, there is a relationship between σx and σp called the uncertainty
principle:

σxσp ≥
~
2

(8)

This tells us that we cannot measure both position and momentum with arbitrary precision
each time (which would reduce the spread in the values of x and p) − the more precisely you
know one, the less precisely you know the other. I encourage you to look into the proof for this
principle for your own learning, but it will not be an exercise on this exam.

I.1.1 Exercise

Show the intermediary steps needed to fully illustrate Equation (3): in other words, show that〈
p̂
〉

=

ˆ ∞
−∞

Ψ∗(x, t)

(
−i~ ∂

∂x

)
Ψ(x, t) dx

for a general wavefunction Ψ(x, t). To do this, you must do the following two things:

1. First, we will give you that

d

dt

ˆ ∞
−∞

∣∣∣Ψ(x, t)
∣∣∣2 dx =

ˆ ∞
−∞

∂

∂t

∣∣Ψ(x, t)
∣∣∣2 dx

since the left-hand side has the integral depending solely on time, allowing us to write a

total time derivative outside the integral, but on the right-hand side
∣∣∣Ψ(x, t)

∣∣∣2 depends

on both x and t, so we need a partial derivative when pulling the derivative inside the
integral.

Using this, illustrate that

d

dt

ˆ ∞
−∞

∣∣∣Ψ(x, t)
∣∣∣2 dx =

i~
2m

ˆ ∞
−∞

∂

∂x

(
Ψ∗(x, t)

∂Ψ(x, t)

∂x
− ∂Ψ∗(x, t)

∂x
Ψ(x, t)

)
dx

You will need Equation (1) for this.

2. Finish the proof by showing that

i~
2

ˆ ∞
−∞

x
∂

∂x

(
Ψ∗(x, t)

∂Ψ(x, t)

∂x
− ∂Ψ∗(x, t)

∂x
Ψ(x, t)

)
dx =

ˆ ∞
−∞

Ψ∗(x, t)

(
−i~ ∂

∂x

)
Ψ(x, t) dx

using integration by parts.

Hint: Assume Ψ(x, t)→ 0 as x→ ±∞ in order to be normalizable.
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I.1.2 Exercise

Prove Equation (5): show that 〈(
j −

〈
j
〉)2〉

=
〈
j2
〉
−
〈
j
〉2

Hint: Since
〈
j
〉

is a constant for a given distribution of j, we can pull it out of sums.

I.1.3 Exercise

Suppose the wavefunction of a system is given by

ψ(x) =

A sin
(πx
a

)
0 ≤ x ≤ a

0 x > a, x < 0

1. Find the value of A such that the wavefunction is properly normalized and fulfills Equation
(2).

2. Use this normalized wavefunction to calculate
〈
x̂
〉

and
〈
p̂
〉
, the expectation values of the

position and momentum of a particle in this state.

3. Use the normalized wavefunction to calculate σx and σp using Equations (6) and (7) and
confirm that it adheres to the uncertainty principle given by Equation (8).

I.2 Separation of Variables

We can use a trick called separation of variables to attempt to solve Schrodinger’s equation
when the potential V is time-independent (V = V (x)), in which we take

Ψ(x, t) = ψ(x)φ(t)

which would give us

∂Ψ(x, t)

∂t
= ψ(x)

∂φ(t)

∂t
and

∂2Ψ(x, t)

∂x2
=
∂2ψ(x)

∂x2
φ(t)

that we can plug back into Equation (1) to get

i~ψ(x)
∂φ(t)

∂t
= − ~2

2m

∂2ψ(x)

∂x2
φ(t) + V (x)ψ(x)φ(t)

If we divide both sides by Ψ(x, t) = ψ(x)φ(t), then we get

i~
1

φ(t)

∂φ(t)

∂t
= − ~2

2m

1

ψ(x)

∂2ψ(x)

∂x2
+ V (x)

Now, the left hand side of the equation above is only dependent on time t while the right hand
side of the equation above is only dependent on position x. In order for this to be the case,
both sides must equal a constant. If we call this constant E, then on the right-hand side we see
that

− ~2

2m

1

ψ(x)

∂2ψ(x)

∂x2
+ V (x) = E

and after multiplying both sides by ψ(x), we get

− ~2

2m

∂2ψ(x)

∂x2
+ V (x)ψ(x) = Eψ(x) (9)
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Similarly, the left-hand side would give us

i~
1

φ(t)

∂φ(t)

∂t
= E

and multiplying. both sides by φ(t) and dividing by i~ would give us

∂φ(t)

∂t
=
E

i~
φ(t) = − iE

~
φ(t)

where on the right-hand side I multiplied the numerator and denominator by i. This has the
solution

φ(t) = e−
iE
~ t

where we ignore a the proportionality constant since the total solution is Ψ(x, t), so we can
just figure out the proportionality constant when solving for ψ(x), which is typically the part
most relevant for normalization. For the rest of this exam, however, we will focus on the
time-independent Schrodinger equation, which is Equation (9). It is spatial portion of the
wavefunction, ψ(x), for which we have to be more concerned with the precise problem setup.

There’s a reason that the chosen constant is denoted as E. In classical mechanics, there is a
term called the Hamiltonian of a system, which gives the total energy of the system as the
sum of its kinetic energy (often denoted with T ) and its potential energy (denoted with V ):

H = T + V

Since the kinetic energy is given by

T =
p2

2m

this gives us the classical mechanical Hamiltonian

H =
p2

2m
+ V (10)

I.2.1 Exercise

Use the definition of the p̂ operator given in Equation (4) to demonstrate that Equation (10)
becomes

Ĥ = − ~2

2m

∂2

∂x2
+ V

This allows us to write Equation (9) as

Ĥψ(x) = Eψ(x)

which explains why we referred to our arbitrary constant E as the energy of the state.

II Square Wells

II.1 The Infinite Square Well

An infinite square well is a system where the potential energy is given by

V (x) =

{
0 0 ≤ x ≤ a
∞ x > a, x < 0

(11)

In order for the energy to not blow up outside of the region 0 ≤ x ≤ a, we must have ψ(x) = 0
for x > a & x < 0. Thus, we are only concerned with the wavefunction and energies inside the
well, which has a width a and spans from x = 0 to x = a.

8



We can rewrite Equation (9) as

d2ψ

dx2
= −k2ψ where k ≡

√
2mE

~
(12)

where we can assume that E ≥ 0 because V = 0 and we must have E ≥ V to avoid issues related
to normalizing the wavefunction. This is the classical simple harmonic oscillator equation. Its
general solution must take the form

ψ(x) = A sin(kx) +B cos(kx) (13)

Because we established that we must have ψ(x) = 0 for x < 0 and x > a, and because the
wavefunction must be continuous, this requires that

ψ(0) = ψ(a) = 0 (14)

II.1.1 Exercise

1. Sketch the potential of the infinite square well system (i.e. sketch V (x) vs. x from
Equation (11))

2. Plug Equation (13) back into Equation (12) to show that the equality in Equation (12) is
actually satisfied with Equation (13).

3. Using the boundary conditions given in Equation (14), show that

ψn(x) =

√
2

a
sin
(nπx

a

)
and

En =
n2π2~2

2ma2

where n ∈ N (i.e. n is a natural number, with n = 1, 2.3, ...).

Hint: sin(±nπ) = 0 and cos(±nπ) = ±1.

4. Briefly explain why n must start at 1 and not 0.

5. Let’s pretend that we can get a quantum emitter to emit light at a particular wavelength
λ by constructing an object with the infinite square well potential given in Equation (11)
and exploiting the n = 1 to n = 2 transition of an electron (so that m = me). Basically,
when an electron relaxes down from a higher-energy eigenstate (larger n) to a lower-energy
eigenstate (smaller n), it can release that extra energy in the form of a photon. This is
what happens in light-emitting devices such as lasers and LEDs.

If we want this emitter to emit green light (500 nm), then what should the radius a be?
Show your calculations and work. How does this compare to the radius of an atom, which
is around 2 ∗ 10−10 m (2 Å)? While this is a very crude model, this illustrates a way you
can begin to think about what quantum dots are and how quantum dots work.

II.2 The Finite Square Well

Now, let us shrink the potential barrier and look at an object with the potential

V (x) =

{
−V0 |x| ≤ a
0 |x| > a

(15)

where V0 is a positive constant. Note that here, the width of the well is 2a, not a, since the
well potential goes from x = −a to x = +a. Here, because of the potential setup, we can have
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solutions with E < 0 (bound states) and E ≥ 0 (scattering states). We will focus on the
bound states for the purposes of laser emission.

In |x| > a, the potential is V (x) = 0, so Equation (9) becomes

d2ψ

dx2
= κ2ψ where κ ≡

√
−2mE

~
(16)

κ is real and positive. The solution for this equation takes the general form

ψ(x) = Aeκx +Be−κx, |x| > a (17)

In the region |x| ≤ a, with V (x) = −V0, Equation (9) becomes

d2ψ

dx2
= −l2ψ where l ≡

√
2m(E + V0)

~
(18)

The general solution for this equation takes the form

ψ(x) = C sin(lx) +D cos(lx), |x| ≤ a (19)

When solving this system, we can save time by noting that since the potential is an even
function, we can assume with no loss of generality that solutions are either even or odd, which
lets us impose boundary conditions for only one side (eg. x = a). We encourage you to look
into the proof of this claim for your own understanding, but we will not ask you to prove this
here.

II.2.1 Exercise

Let’s start with looking at the even solutions (where ψ(−x) = ψ(x)).

1. Show, by plugging in the general solution forms Equations (17) and (19) into Equations
(16) and (18) for the respective ranges of x, that the wavefunction must take the form

ψ(x) =


Be−κx x > a

D cos(lx) |x| ≤ a
Beκx x < −a

In doing so, address:

• Why the boundary conditions and evenness dictate that ψ(x) ∝ e−κx for x > a and
ψ(x) ∝ eκx for x < −a

• Why the evenness of the wavefunction requires ψ(x) ∝ cos(lx) for |x| ≤ a

2. Use the continuity of ψ(x) and dψ/dx between the different regions, at boundary points
x = ±a, to demonstrate that we must require

κ = l tan(la)

Hint: as noted before, the evenness of this wavefunction lets us save time by only needing
to apply the boundary condition to either x = a or x = −a.

3. Make the substitutions
z ≡ la and z0 ≡

a

~
√

2mV0

and use the definitions of κ and l from Equations (16) and (18) to demonstrate that the
equation in the previous part gives us the condition

tan z =

√(z0

z

)2
− 1

This equation has z on both sides, but it can be solved numerically by plotting both sides
and finding the points of intersection.
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4. Examine the following two limiting cases:

• Wide, deep well

• Shallow, narrow well

Consider the following questions:

• What happens to z0 in each of those cases (i.e. what limiting values does it ap-
proach)?

• What are the limiting values of z (zn) where the intersections between tan zn and√
(z0/zn)2 − 1 occur?

What is the limit of En for the wide, deep well with these limiting zn? Specify if n
is even or odd, if needed.

Hint: use the definitions of z, z0, and l.

• What does this limit of En in the case of the wide, deep well remind you of?

• Is it possible to have zero bound states in the shallow, narrow well for the odd case,
if the well is shallow and narrow enough? If it is, then what is the corresponding
condition on V0 for this to be true? If not, what is the minimum number of bound
states a well must have?

II.2.2 Exercise

Now let’s look at the odd solutions (where ψ(−x) = −ψ(x)).

1. Show, by plugging in the general solution forms Equations (17) and (19) into Equations
(16) and (18) for the respective ranges of x, that the wavefunction must take the form

ψ(x) =


Be−κx x > a

D sin(lx) |x| ≤ a
−Beκx x < −a

In doing so, address:

• Why the boundary conditions and oddness dictate that ψ(x) ∝ e−κx for x > a and
ψ(x) ∝ −eκx for x < −a

• Why the oddness of the wavefunction requires ψ(x) ∝ sin(lx) for |x| ≤ a

2. Use the continuity of ψ(x) and dψ/dx between the different regions, at boundary points
x = ±a, to demonstrate that we must require

κ = −l cot(la)

Hint: as noted before, the oddness of this wavefunction lets us save time by only needing
to apply the boundary condition to either x = a or x = −a.

3. Make the substitutions
z ≡ la and z0 ≡

a

~
√

2mV0

and use the definitions of κ and l from Equations (16) and (18) to demonstrate that the
equation in the previous part gives us the condition

cot z = −
√(z0

z

)2
− 1

This equation has z on both sides, but it can be solved numerically by plotting both sides
and finding the points of intersection.
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4. Examine the following two limiting cases:

• Wide, deep well

• Shallow, narrow well

Consider the following questions:

• What happens to z0 in each of those cases (i.e. what limiting values does it ap-
proach)?

• What are the limiting values of z (zn) where the intersections between cot zn and
−
√

(z0/zn)2 − 1 occur?

What is the limit of En for the wide, deep well with these limiting zn? Specify if n
is even or odd, if needed.

Hint: use the definitions of z, z0, and l.

• What does this limit of En in the case of the wide, deep well remind you of?

• Is it possible to have zero bound states in the shallow, narrow well for the odd case,
if the well is shallow and narrow enough? If it is, then what is the corresponding
condition on V0 for this to be true? If not, what is the minimum number of bound
states a well must have?

II.2.3 Question

Compare and contrast ψ(x) outside of the well (eg. for x > a) in the finite and infinite well
cases. Provide your interpretation of what this means for a particle starting inside the well and
whether it can ever leave the well in each of those cases. Also compare each case to what we
expect in classical mechanics. This relates to the phenomenon known as quantum tunneling.

III Quantum Cascade Laser Design

III.1 Single-Well Design

If our design were to consist of a single well, it would look exactly like the finite-well problem.
Below is a graph of the potentials and the first two eigenstates of the single finite well problem:

Figure 1: Sketch of a single finite well with the ”n = 1” and ”n = 2” eigenstates

Here you see sketches of the square of the wavefunctions for the first two bound eigenstates in
the well, corresponding to the lowest two values of z such that the boundary condition criteria
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were satisfied for the even or odd solutions of ψ(x). Be careful, because while the well is plotted
as energy E versus x, the wavefunction is plotted as |ψ(x)|2 vs. x. You can also think back to
the infinite well, when En ∝ n2 for natural numbers n, although the exact wavefunctions and
energy values are different for this finite-well case.

In practice, these quantum wells are made by alternating materials, generally semiconductors,
with different band gaps. Check out this link (https://energyeducation.ca/encyclopedia/
Band_gap) for more information about metals vs. semiconductors vs. insulators, conduction and
valence bands, band gaps, etc. Suffice it to say, conduction bands are the lowest ”unoccupied”
energy level in a material in which electrons are allowed (I use quotes because random thermal
excitations of electrons means that there is always a miniscule number of electrons in the
conduction band for temperatures above 0K, but it’s still a tiny fraction of the total electron
number. In common semiconductors, this fraction is anywhere from 10−12 to 10−16 at room
temperature).

The sketch in Figure 1 is inspired by the author’s research on gallium arsenide (GaAs)-based
quantum cascade lasers. It shows the conduction bands of GaAs and aluminum gallium arsenide
(AlGaAs). The middle region, with |x| < a, is made of GaAs, and it is surrounded to the left
and right by layers of AlGaAs, which has a higher band gap. The composition of AlGaAs can
vary by changing the relative fractions of aluminum (Al) and gallium (Ga). Technically, its
composition must be expressed as AlxGa1−xAs.

When x = 1, we have pure aluminum arsenide (AlAs), with a band gap of 2.16 eV (and gives
rise to the maximum possible finite barrier height) while with x = 0 we have pure GaAs and
there is no barrier height and therefore no well. For compositions in-between, if we focus on
the position of the conduction band (which we will call EC) we can estimate it as

EC(AlxGa1−xAs) = xEC(AlAs) +
(
1− x

)
EC(GaAs) (20)

When designing a quantum well, we saw earlier that the intersection values z in the finite-well
solution depended on z0, which was defined in terms of both a, (half of) the well width, and
V0, the well depth, so both V0 and a dictate the energy levels and can help achieve the desired
emission wavelenegth. In practice, you would start with setting V0 by tuning the composition
of the heterostructure (in this case, by adjusting x in AlxGa1−xAs). This is because when
semiconductors have different lattice constants (distance between the closest repeating units
in a crystal, such as the difference between the nearest sodium atoms in a sodium chloride
crystal) growing them on top of each other introduces lattice strain because of this difference,
stretching or compressing the crystal, which introduces unwanted defects and makes device
performance suffer.

Because of this, we want x to be as small as possible so that the lattice constants are as
similar between the two materials as possible, which will let us minimize lattice strain and its
associated defects. On the other hand, we also want our well to be tall enough to contain the
desired number of energy states (no fewer than two, but needing at least three in practice).
Therefore, by optimizing the composition to balance these two constraints, we can set our
V0, and from there we can use the finite-well expressions to solve for a well width 2a that will
obtain the desired energy offsets between adjacent energy levels. This gives us a way to solve the
conundrum of ”V0 or a first?”: first optimize V0 for lattice strain and energy state confinement,
then set a to obtain the desired emission energy.

III.1.1 Question

1. Draw Figure 1 for yourself (either by hand or on the computer). Based on the sketches
of the squares of the wavefunctions for the first two bound eigenstates, clearly indicate
where a particle in the n = 1 state is most likely to be. Do the same for a particle in the
n = 2 state.
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2. Can a particle that starts off inside the well find itself outside of the well? Why or why
not? If it can, draw vertical dotted lines in your figure to indicate the maximum distance
to the left and right of the y axis that the particle can travel / exist. If it cannot, you do
not need to do anything more.

3. What does the previous part tell us about the possibility of quantum tunneling? If quan-
tum tunneling can occur, what does the previous part tell us about the placement of
adjacent finite quantum wells to the left and right of this one in order to permit tunneling
from one well to another?

III.1.2 Exercise

Let us say that the conduction band offset between the conduction bands of GaAs and AlAs is
230 meV (milli-electron volts) (in reality, there is a non-linearity, but to simplify, we will assume
that in this problem the maximum conduction band offset occurs for an x = 1 AlxGa1−xAs alloy
composition).

Suppose you run some simulations and determine that you need a band offset of 189 meV to
minimize lattice strain while sufficiently containing the n = 1 and n = 2 eigenstates so that
you have at least two bound states to allow emission to occur. What is the concentration of
aluminum (value of x) in AlxGa1−xAs that will yield the desired band offset?

III.1.3 Question

Because of the non-zero aluminum content found in the previous exercise, the resulting quantum
well structure will exhibit lattice strain, which will alter the results from what we expect with
our current model. Let us say that the strain stretches the well, such that the width of the well
is wider than what we expect when providing the crystal growers with the growth parameters
and layer thicknesses.

1. Will this affect the individual energy levels? If so, then how?

2. Will this affect the spacing between energy levels? IF so, then how?

III.2 Two-Well System

Below is the sketch of two finite-barrier quantum wells connected by a thin barrier to permit
quantum tunneling between the wells:

Figure 2: Sketch of the squares of the wavefunctions for different energy levels in a two-well system. The origin of the
system is indicated by the intersection of the x and y axes and marked by the black dot.

Since the well heights are the same as in the one-well case, we see that the n = 1 and n = 2
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energy states in the one-well case have now split into two states each. Now, we are concerned
with the transition between the new n = 3 and n = 2 states for photon emission. The transition
between the new n = 2 and n = 1 states, on the other hand, tends to result in the emission of
phonons (lattice vibrations, so basically quantized sound waves) for reasons we will not get into
here. This will be true from here on out, so we will concern ourselves mostly with the transition
between the n = 2 and n = 3 states.

III.2.1 Question

1. Comment on the shape of the wavefunctions of the new n = 1, n = 2, n = 3, and n = 4
states in this two-well system and compare them to the old n = 1 and n = 2 states in the
one-well system. Focus on the portion of the new wavefunctions in one of these wells (eg.
the right well).

2. What does this tell you about the splitting of the states when going from the old one-well
case to the new two-well case? Specifically, the old n = 1 corresponds to which of the n
state(s) in the new well? What about the old n = 2 state − which of the n states in the
new well does it correspond to?

III.2.2 Exercise

Following the setup of the single finite well and in accordance with the sketch in Figure 2, set
up the two-well problem. To help you, I will give you the potential of the system shown in
Figure 2:

V (x) =

{
0 |x| < b/2, |x| > b/2 + a

−V0 b/2 ≤ |x| ≤ b/2 + a

where a is the width of the well and b is the width of the barrier coupling the two wells.

Is the potential even or odd (or neither)? What does that tell us about the form of the
wavefunction? If the wavefunction must be even or odd, you can choose to focus on the odd
wavfunction case. Your wavefunction should be written as a piecewise function, similar to the
one-well finite barrier case in an earlier section, that takes the form

ψ(x) =



f(x) x > b/2 + a

g(x) b/2 ≤ x ≤ b/2 + a

h(x) |x| < b/2

j(x) −b/2− a ≤ x ≤ −b/2
q(x) x < −b/2− a

where f(x), g(x), h(x), j(x), and q(x) are various functions of x that may or may not be related
to each other.

What are the relevant boundary conditions, and what constraints do they give us? Try to
follow the general steps in the finite square well exercises as closely as possible, although your
expressions will be different in this exercise because the potential is different.

III.2.3 Question

1. Based on what you know about the wavefunction of a state inside and outside a finite
square well, should you make your barriers between your wells thicker or thinner in order
to maximize tunneling between wells?

2. Growing single atomic layers is a difficult and time-consuming process. As a result, ma-
terial growers prefer to have layers at least three atomic layers thick (∼ 3-9 Å). Does this
create a trade-off between tunneling and minimum well thickness?
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III.3 Three-Well System

Many quantum cascade lasers use at least three quantum wells in a single active region unit
because it allows for both vertical and diagonal transitions when a potential bias is applied
to the system (which we will explore later). Below is a diagram illustrating such a three-well
system:

Figure 3: Diagram of a three quantum well active region.

The more overlap between the wavefunctions of each state, the better the tunneling will be
between them because the more likely that being at a given electron energy will mean being
able to move back and forth easily between the overlapping states. Therefore, the narrower
the spread in wavefunctions arising from the splitting of a given one-well band, the better the
electron transport through the system.

III.3.1 Question

1. What do the shapes and positions of the wavefunctions parallel to the energy axis tell you
about the splitting of the old, one-well n = 1 and n = 2 energy levels into the levels seen
in this three-well system?

2. How many of the energy levels pictured in Figure 3 correspond to the old one-well n = 1
state? How many of the ones pictured here correspond to the old n = 2 state? Redraw
Figure 3 and indicate on your drawing which ones correspond to each.

3. Are your responses to the previous part the same for the old n = 1 and old n = 2 states?
Is this what you would expect based on our discussion of the two-well system? If not,
what do you think is the reason for this discrepancy? What is the implication of this for
a particle in an excited state in this system? Will the particle be more or less likely to
stay within the wells compared to the one-well and two-well cases discussed earlier?

III.3.2 Question

What do you think will happen if more wells are added to the system, assuming the same well
and coupling barrier widths?

III.4 Biased Three-Well Active Region

Biasing the structure by applying a voltage to it puts the first quantum well at at a higher
potential than the last one and tilts all the well bottoms and barriers themselves. Because the
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energy levels all started out flat, applying a constant voltage to the system will tilt the entire
system the same. Below is a diagram of a biased three-well system where all the well widths
are the same thickness a and all the coupling barriers are the same thickness b when the system
is unbiased:

Figure 4: Sketch of a biased three-well system with each well having width a and each coupling barrier having width b.
The red line pictured is for the purposes of one of the questions in this section.

The red line in Figure 4 is for the purposes of one of the questions in this section.

III.4.1 Exercise

Write an expression for the potential V (x) of the system using the fact that each well width is a
and each barrier width is b (but note that the ”barriers” at the left and right edges extend out
to ±∞). You can call the slope of the potential c. Your potential expression will be a piecewise
function, as we have seen before for all the other quantum well systems.

III.4.2 Question

These diagrams, which show quantum wells made of conduction bands, plot the energy of an
electron, which is a negatively charged particle. Thus, in Figure 3, an electron in the lower
energy states will have an electron energy that’s 0.3-0.4 eV above the bottom of the well.

Based on this, how is the system biased? In other words, to which side will you apply the
positive voltage and to which side will you apply the negative voltage? Sketch Figure 4 and
label the + and - terminals in the figure.

III.4.3 Question

1. Compare the alignment of the wells in the biased system shown in Figure 4 to that of the
unbiased system shown in Figure 3. What does this tell you about the alignment of the
energy levels if we look at each well in the system separately (i.e. pretend that they are
uncoupled and much further apart)?

2. Based on your answer to the previous part, will you achieve the best energy band alignment
(and therefore the narrowest spread in the wavefunctions) by making all three wells the
same width? Use your answer to the previous part to support your claim. If the wells
should be of different widths, then sketch a biased three-well system and indicate the
relative widths of each of the wells (i.e. which one is the widest, which is the narrowest,
and which is in the middle, thickness-wise).
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Hint: you can refer back to the expression for energy levels in the infinite-well system,
which most explicitly gives the relationship between energy levels and well thickness. Even
though this is not an infinite well system, the qualitative behavior follows a roughly similar
relationship.

III.4.4 Question

1. Now let’s think specifically about the excited states in this system. Consider an excited
state inside the left-most well, but near the top of this well, as shown by the red line in
Figure 4. Remember, the energy of a given state is the same throughout the system at
all positions.

Based on this, where will the wavefunction of this state be relative to the tops of the
middle and right-most well? What does this tell you about whether an electron in this
state will be contained inside these wells if tunneling occurs? Can this cause problems in
the operation of this device? If so, what problems?

2. Below is a figure of the same three-well system, but this time it is at a higher bias:

Figure 5: Three-well system at a higher bias than before

How will this higher bias affect tunneling through the barriers? Why is that? Use the
geometry of the situation and the fact that the unbiased well and barrier widths, a and
b respectively, are still the same in this system as compared to Figure 4. How will this
affect electron transport through the device?

3. Based on your answers to the previous parts of this question, is there a trade-off to consider
when deciding on the appropriate bias to apply to the system? If so, what is this trade-off?

III.5 Full Quantum Cascade Laser System (Active + Injector Region)

Finally, we will look at the ”full” quantum cascade laser system unit, which will contain two
active regions bridged by an injector region. A full laser will have millions of such units, but
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they will simply repeat this unit, so examining this will tell us everything we need to know
about the core physics of this system and its emission. Below is a diagram of this system:

Figure 6: Schematic of two active regions bridged by an injector region, with an injector region to the left of the left active
region and right of the right active region as well.

III.5.1 Question

1. Based on the schematic in Figure 6 and everything you have learned about quantum wells
and quantum cascade lasers, explain how a quantum cascade laser works. Remember
that an electron can drop down to a lower-energy state and emit a photon in the process.
Start with an electron entering through the injector region on the left and trace its path
through the device as sketched above. Use the arrows to help guide you and describe what
is happening at each of these stages labeled by said arrows.

2. What is the purpose of the injector region? What must you try to achieve (specifically
with the alignment of different energy states) in order to accomplish this goal? Based on
this, is there more flexibility or less when setting the widths of the wells in the injector
regions as compared to those of the active regions?

3. In order for a laser to lase and emit light at its high power (higher than LEDs and other
light sources we commonly use), it must achieve gain , which (in this context) is when the
energy of the surroundings (in this case, coming from the potential bias of the system) can
be used to amplify the emission, such that a single electron can emit multiple photons.

Explain, with the help of the schematic in Figure 6, how the biased quantum well structure
in this quantum cascade laser can give rise to such laser gain. Do you understand why it
is called a quantum cascade laser now? Can you explain why this is so?
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III.5.2 Question

Summarize the parameters that we have discussed that are relevant to laser design as well as
all trade-offs that we have discussed (and any others that you may be able to come up with)!

IV Afterword

Congratulations on making it to the end of this assignment! If you have gone through all the
sections and engaged with the questions and exercises, you should now have a solid under-
standing of the basics of quantum cascade laser physics, how this laser works, and the design
parameters, principles, and limitations that need to be considered when designing one of these
devices. We hope you enjoyed the exam, that you learned a lot, and that this may have sparked
an interest in learning more!

20


	Schrodinger's Equation
	Introduction to Schrodinger's Equation
	Exercise
	Exercise
	Exercise

	Separation of Variables
	Exercise


	Square Wells
	The Infinite Square Well
	Exercise

	The Finite Square Well
	Exercise
	Exercise
	Question


	Quantum Cascade Laser Design
	Single-Well Design
	Question
	Exercise
	Question

	Two-Well System
	Question
	Exercise
	Question

	Three-Well System
	Question
	Question

	Biased Three-Well Active Region
	Exercise
	Question
	Question
	Question

	Full Quantum Cascade Laser System (Active + Injector Region)
	Question
	Question


	Afterword

