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Abstract

Tidal heating of Io, the innermost Jovian moon, has become a topic that is visited regularly by physicists.
Some preferred to look at solid aspect of Io’s crust as a primary reason of heating [1], and others preferred the
route of taking into account the viscosity of the magma covering Io as the main cause [2]. Although these
studies took different paths regarding the root of tidal heating, both of their models are complex to a degree
that it is hard to gain a cohesive understanding of the phenomena. In this paper, we try to get a relatively
accurate result for the power output of the tidal heating of Io by a simpler model, but still keeping some of
the ideas propesed in the papers cited.

I. Introduction

The Jovian moon Io is the only planetary body
in the Solar System that is thought to have
strong tidal action (by Jupiter’s gravitational
field) as the primary internal heat source driv-
ing its active silicate volcanism [2]. From
experimental data we see that Io mainly in-
teracts with Jupiter and Europa. Io traces
an orbit with ε = 0.0041 eccentricity around
Jupiter, and its 2:1 orbital resonance with Eu-
ropa causes Io to maintain this eccentricity
which would otherwise tend to zero as a re-
sult of tidal dissipation. In this paper it will
be assumed that Io’s internal heat production
is dominated by tidal dissipation [3]. This heat
production mechanism has garnered attention
since it is different from the mechanism that
governs the Earth - radiogenic heat. Follow-
ing the study [1] that initiated the inquiry
for the correct physical model regarding the
nature of phenomena, many solid-body and
fluid-body dissipation models [5] [6] were de-
veloped [2]. However, the complexity of these
models and copious calculations in them were
not commensurate enough with the accuracy
of the results obtained by utilizing the mod-
els. Therefore, we devise a simpler model, dif-
fering from the current understanding of the
phenomena, in order to provide a qualitative
explanation which can be used to derive a re-
sult that is in the range of the findings in the
papers cited.

II. Ideal Fluid In Gravitational

Field

To get an approximation how Io deforms un-
der Jupiter’s gravitation, lets assume Io to be
an ideal fluid, which is far from reality, but
it won’t make a huge difference once we add
the solid core inside the ideal fluid after get-
ting an idea how the boundary of Io oscillates
due to its eccentricity. For a static ideal fluid
the surface must be equipotent, so we get the
equation

γMj

R(θ)
+

γMio
r(θ)

+
ω2R2(θ)

2
= constant (1)

where ~R(θ) = ~Rio +~r(θ), ~Rio is the vector from
Jupiter to center of Io,~rθ is the vector from cen-
ter of Io to surface, and θ is the angle between
~Rio and ~r(θ). Also Mj and Mio are the masses
of Jupiter and Io respectively. For the angu-
lar velocity of Io and R(θ), we get with some
approximation

ω =
γMj

R2
io

R(θ) = R−1
io

(
1− r2

2R2
io

)(
1 + Riorcosθ

R2
io + r2

) (2)

Plugging in the values we get
αRio

r
− 3R2rcosθ

2R2
io

= constant (3)

Here, R is the average of r(θ) taken over the θ

variable and has the approximate value of R =

1.8 ∗ 106(m) according to the data regarding Io,
and α = Mio/Mj. Taking the derivative of this
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equation with respect to θ gives
dr
dθ

= ersinθ
1 + ecosθ

e = 3
2

(
R

Rio

)4 1
α = 1.1 ∗ 10−5

(4)

This is the equation of an ellipse with an ec-
centricity e = 1.1 ∗ 10−5. Thus we see that the
shape of the surface of the fluid can be de-
scribed by an ellipsoid. We can go further to
calculate the height of the tides on Io from the
fact that we have the core of Io on the focus
point of ellipse surface so the difference be-
tween r = r0

1−e and r0
1+e can give us an estima-

tion on the height of the tides.

Htide =
r0

1− e
− r0

1 + e
= 68.6(m) (5)

which is close to other estimations made in the
articles cited.

III. Temperature Difference

Between a Solid Sphere and a

Fluid Moving Past

Heat transfer in an incompressible fluid is
given by the equation [4]

∂T
∂t

+~v.∇T = χ∇2T +
ν

2cp

(
∂vi
∂xk

+
∂vk
∂xi

)2
(6)

In this equation indices are summed accord-
ing to the Einstein’s summation rule. Here, T
is the temperature, ~v is the velocity, ~x is the
space coordinate, and χ and ν are thermomet-
ric conductivity and kinematic viscosity of the
fluid respectively.
Let us assume that Reynolds number of our
fluid is small, and quasi-static equilibrium is
reached.

~v.∇T � χ∇2T (7)
∂T
∂t

= 0 (8)

So that Eq.6 takes the form

χ∇2T = − ν

2cp

(
∂vi
∂xk

+
∂vk
∂xi

)2
(9)

For this case, we first need to find velocity of
the fluid as a function of coordinates. To cal-
culate this it is assumed that we are dealing
with a incompressible fluid. We write the ve-
locity from equation (20.9) in [4] for spherical
symmetry.

~v = −3
4

R
~u +~n(~u.~n)

r
− 1

4
R3~u− 3~n(~u.~n)

r3 + ~u (10)

Where R is the radius of the sphere moving in
the fluid, and u is the sphere’s velocity. Plug-
ging this expression for velocity of the fluid to
Eq.9, we get a differential equation for T which
has a solution in the form

T = f (r)cos2θ + g(r) (11)

where f (r) and g(r) are found from boundary
conditions. Calculating these functions we get
the temperature difference between the solid
sphere and the fluid.

∆T =
5u2P
8cp

(12)

where u is the mean speed of the fluid, P is the
Prandtl number, and cp is the heat capacity per
mass.

IV. The Model

The main concept governing our model is that
we take viscosity of fluids surrounding Io as
the primary cause of heat production, which
is in line with the recent findings on Io’s vol-
canoes’ placement. In the previous section
we looked at a solid sphere moving in an in-
compressible fluid which is essential for our
model. As we derived earlier the shape of the
fluid surrounding Io can be taken as a ellip-
soid which has semi-axises that depend on the
distance between Io and Jupiter. This distance
changes overtime as a result of the eccentricity
of the orbit, so that we have a fluid shell mov-
ing relative to Io’s solid core. We approximate
this relative motion to get a averaged con-
stant velocity. We add a solid core of radius
R = 1.8 ∗ 106(m) to the fluid ellipsoid model
that we have previously calculated. From our
previous calculations this ellipsoid’s surface
projected to the plane of the orbit can be writ-
ten as

r =
p

1 + εcosθ
(13)

where p is a constant that depends on the ra-
dius of Io. The calculations that we did in the
first section show that

p =

√
Mio
Mj

Rio (14)

ṙ = εα
1
2

2π

T
Rsin(

2π

T
t) (15)



where T is the period, Rio the average distance
between Jupiter and Io, and ε is the eccentric-
ity of Io’s orbit. Taking the root mean square
of ṙ, we get

u =
√

2
π

T
α

1
2 R (16)

Let us assume that composition of the fluid
covering Io is %20 magma and %80 water.
It is known that magma’s Prandtl number is
around 103 and water’s Prandtl number is
around 6.74. Heat capacity for water cp =

4.2(J/g.K) and for magma cp = 1.0(J/g.K). Tak-
ing the weighted averages of these values and
plugging them in Eq.12 we get

∆T = 5.1(K) (17)

It is known that the heat flux between a fluid
and solid is of the form

q = h∆T (18)

Here h = Nκ, where N is the Nusselt number
and κ is the conductivity of the fluid. It can be
shown that this number depends on Rayleigh
number as shown.

N =
0.14R

1
3
aL

L
(19)

Here L is the characteristic length of the sys-
tem for which we take the thickness of Io’s
crust that is estimated to be around 50(km).
RaL is the Rayleigh number that we calculate
as follows

RaL =
ρ2gβL3∆T′cp

kη
(20)

Taking these values’ averages for magma
and water we get approximately.

Table 1: For a fluid with %20 magma and %80 water
composition.

k= 2.1328
(

W
m.K

)
β= 188

(
K−1)

g = 1.79
(

m
s2

)
∆T′ = 1400 (K)
ρ= 3.5

(
g

cm3

)
cp= 3.35

(
J

g.K

)
η= 1014 to 1015 (Pa.s)

where ρ is the density of the fluid, g is the ac-
celeration due to gravity, β is the thermal ex-
pansion coefficient, ∆T′ is the temperature dif-

ference between fluid’s two different bound-
aries, η is the dynamic viscosity, and k is the
thermal conductivity. Calculating for h = Nκ

gives

h = 0.628
(

W
m2.K

)
(21)

From which we get the heat flux that is heating
Io as

q = h∆T = 3.20
(

W
m2

)
(22)

which is in the range of 2.4− 4.1 that is sug-
gested by other articles cited.

V. Summary

Latest theoretical studies [7] show that Io has
a ’magma ocean’ around itself. Therefore, in
this paper, we took the Jovian moon Io as
a combination of a solid core and a viscous
fluid constantly oscillating around the spheri-
cal solid core. To give a rough estimate to the
power output, we calculated the heat flux be-
tween the fluid and solid parts by assuming
that Reynolds number of the fluid is small.
Then, by taking the time-average of the ve-
locity of fluid at the sub-Jovian point, we es-
timated the heat output at this point to be
3.2W/m2, in the range of the result found in
the study [2]: 3.8W/m2. The fairly accurate re-
sult we obtained indicates that our simple yet
progressive model was indeed, well-suited to
our purpose of finding the related parameters
of the extreme tidal heating of Io, the most vol-
canically active body in the Solar System [8].
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