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2.1 Basics of Special Relativity

2.1.1 Conceptual Basics of Special Relativity

Problem: The Barn Paradox

We start by considering the classic relativistic ‘paradox’ of a runner carrying a pole slightly
longer than a barn trying to fit the pole inside the barn while a farmer closes the barn doors
instantaneously.

From the reference frame of the farmer, the runner is travelling at a high speed. The phe-
nomenon of length contraction means that the farmer observes the length of the pole as being
shorter than the length of the barn, so it is possible for him to close both barn doors while the
entire pole fits inside the barn. Let’s assume the farmer does this.

From the reference frame of the runner, however, it is the barn that is moving at a high speed,
and so experiences length contraction. Therefore, from this frame it seems impossible that
the farmer was able to close both doors simultaneously around the pole, as the pole is most
definitely longer than the barn. Thus, the ‘paradox’ arises.

However, the two doors close (and open) simultaneously in the reference frame of the farmer
and thus the two doors close and open in succession in the reference frame of the runner; in
special relativity, simultaneity is relative and two events that are simultaneous in one reference
frame are not in another. Therefore from the point of view of the runner the far door closes
and opens first, followed by the near door, and so the paradox is resolved.

2.1.4 The Spacetime Interval

For reference, when performing a Lorentz boost with velocity v in the x-direction, the transfor-
mation is given as follows: 

cdt′

dx′

dy′

dz′

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



cdt
dx
dy
dz


=⇒ cdt′ = γ(cdt− β dx), (1)

dx′ = γ(dx− βcdt), (2)

dy′ = dy, (3)

dz′ = dz (4)

where γ = 1√
1−β2

and β = v
c .

Problem: Invariance of the Spacetime Interval

We are told that writing dxµ dxµ implies a summation from µ = 0 to 3; this can be defined as
a dot product.

Expanding the given product according to the rules of the Einstein summation convention gives
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the spacetime interval as

ds2 = dxµ dxµ

=
3∑

µ=0

dxµ dxµ

= dx0 dx0 + dx1 dx1 + dx2 dx2 + dx3 dx3

= (−c dt)(c dt) + (dx)(dx) + (dy)(dy) + (dz)(dz)

= −c2 dt2 + dx2 + dy2 + dz2. (5)

If we apply a Lorentz boost in the x-direction with speed v, then our new spacetime coordinates
are given by eqs. (1) to (4) as

cdt′ = γ(cdt− β dx),

dx′ = γ(dx− βcdt),

dy′ = dy,

dz′ = dz

and so our new spacetime interval is

ds′2 = dx′µ dx′µ

= −(cdt′)2 + dx′2 + dy′2 + dz′2

= −γ2(c dt− β dx)2 + γ2(dx− βcdt)2 + dy2 + dz2

= γ2(−(cdt)− β2 dx2 + dx2 + β2c2 dt2)

= γ2(1− β2) dx2 − γ2(1− β2)c2 dt2 + dy2 + dz2.

However, we defined γ = 1√
1− v2

c2

and β = v
c , so

γ2(1− β2) =
1− v2

c2

1− v2

c2

= 1

and so our transformed spacetime interval is simply

ds′2 = dx2 − c2 dt2 + dy2 + dz2

= −cdt2 + dx2 + dy2 + dz2.

Therefore, by comparison with eq. (5) we see that our Lorentz transformation had no effect on
the value of our spacetime interval.

Indeed, the situation is symmetric in the three spatial coordinates (we could have chosen our
x-direction as anything) and so the spacetime interval must be invariant under all Lorentz
boosts.

Problem: Time Dilation

Let us consider two consecutive instantaneous events, the first occurring at t = 0 in both frames
the second occurring at t = dt in frame S or t = dt′ in frame S′. These two events, for instance,
could be two ticks of a clock. Since we are interested only in time dilation, we shall say the
two events occur at the same point in space in the unprimed frame S, so that dx = 0. (This is
equivalent to saying that in frame S the clock isn’t moving.)
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Hence, due to the invariance of the interval,

dx2 + dy2 + dz2 − c2 dt2 = dx′2 + dy′2 + dz′2 − c2 dt′2

but the reference frames are moving relative to each other only in the x-direction, and Lorentz
transformations do not alter perpendicular distances, so performing a Lorentz boost in the
x-direction gives dy = dy′ and dz = dz′. Hence,

dx2 − c2 dt2 = dx′2 − c2 dt′2. (6)

However, we have set dx = 0, and so

c2 dt2 = c2 dt′2 − dx′2. (7)

The second Lorentz transformation equation, eq. (2), gives us

dx′ = γ(dx− βcdt)

and therefore we know, substituting this into eq. (7), that

c2 dt2 = c2 dt′2 − γ2(dx− βcdt)2

but since dx = 0,

c2 dt2 = c2 dt′2 − γ2β2c2 dt2

=⇒ dt2 = dt′2 − γ2β2 dt2

=⇒ dt′2 = (1 + γ2β2) dt2

=⇒ dt′ =
√

1 + γ2β2 dt.

Using our definitions γ = 1√
1− v2

c2

and β = v
c , we see that

√
1 + β2γ2 =

√√√√1 +
v2

c2

1− v2

c2

=

√√√√1− v2

c2
+ v2

c2

1− v2

c2

=

√
1

1− v2

c2

= γ

and so we come finally to our formula for time dilation,

dt′ = γ dt. (8)

Since the Lorentz factor γ varies between 1 (at v = 0) and ∞ (at v = c), as shown in fig. 1, the
time measured by the primed frame will increase without bound as the relative velocity of the
two frames approaches the speed of light.

This, rather unintuitively, implies that the faster an object is moving relative to you, the slower
time will appear to pass for that object. For instance, if you look at two clocks, one stationary
relative to you and one moving very quickly away from or towards you, the moving clock’s ticks
will be much further apart than those of the stationary clock.

A real life example of this effect can be observed in satellites in Earth’s orbit, especially GPS
satellites (although some of this time dilation is due to gravity). Objects higher in Earth’s orbit
have relatively higher speeds, and hence time runs more slowly on the satellites’ clocks (relative
to clocks on the surface of the Earth). This results in onboard clocks requiring adjustment in
order to match clocks on the Earth’s surface.
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γ = 1 at v = 0.

Asymptote at v = c.

v

γ

Figure 1: A graph of the Lorentz factor γ = 1√
1− v2

c2

plotted against v.

Problem: Length Contraction

We are now interested in length contraction, so let’s consider a beam of wood with one end at
x = 0 in both frames and the other end at x = dx in frame S or x = dx′ in frame S′. Suppose
there are two events, one at either end of the beam of wood, that are simultaneous in the moving
frame S′, so that dt′ = 0, so that the length of the wood as measured from the moving frame
S′ is dx′ but the proper length of the wood, as measured from its rest frame S, is dx.

We know from eq. (6) that
dx2 − c2 dt2 = dx′2 − c2 dt′2

and so since dt′ = 0,
dx′2 = dx2 − c2 dt2. (9)

Then by the first Lorentz transformation (eq. (2)),

cdt′ = γ(cdt− β dx)

=⇒ cdt =
cdt′

γ
+ β dx

and so substituting this into eq. (9),

dx′2 = dx2 −
(
cdt′

γ
+ β dx

)2

.

We have set dt′ = 0 however, and thus

dx′2 = dx2 − β2 dx2

=⇒ dx′2 = (1− β2) dx2

=⇒ dx′ =
√

1− β2 dx.
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However, γ = 1√
1−β2

by definition and so
√

1− β2 = 1
γ , meaning

dx′ =
dx

γ
.

This equation for length contraction is beautifully symmetric with that for time dilation given
in eq. (8), and just as time for some object will appear to pass increasingly slowly to an observer
as an object’s relative speed nears the speed of light, so the length of that object will decrease
until it takes up apparently no space when travelling at the speed of light.

As an example, consider a coach moving at some velocity with lights at the front and back.
When either of the lights flash, that light drops a marker.

An observer sees the coach pass. When the midpoint of the coach is in line with the observer,
the lights flash. The light has to travel equal distances and since the speed of light is constant,
the flashes reach the observer simultaneously.

However, an observer inside the coach placed midway between the two lights would appear to
see first the back light and then the front light because they are travelling at a velocity, and
the simultaneity of events is not conserved because of time dilation. The lights drop markers as
they flash, but because they now occur in succession the distance between the markers seems
reduced. Since from the passenger’s frame of reference it is the outside of the train which is
moving quickly, there is a length contraction at higher relative velocity.

Problem: Relativity and Rotations

For this question, we will be using the Minkowskian space of metric signature (+,−,−,−). For
the remainder of the submission we will return to the signature (−,+,+,+).

Under this metric, the spacetime interval is given by:

ds2 = c2 dt2 − dx2 = c2 dt′2 − dx′2 (10)

since the spacetime interval is preserved under Lorentz transformations.

By analogy with Euclidean space (consider how the trigonometric functions relate the compo-
nents of a vector to its magnitude), we would like dx and cdt to be parameters of ds for some
functions a, b:

dx = a ds,

cdt = bds.

Substituting this into eq. (10),

ds2 = (a ds)2 − (bds)2

= a2 ds2 − b2 ds2

=⇒ 1 = a2 − b2.

Since cosh2 φ− sinh2 φ = 1, we see that the hyperbolic functions satisfy the relation given, and
so we say a = coshφ and b = sinhφ:

∴ cdt = ds coshφ, (11)

dx = ds sinhφ. (12)
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By eqs. (11) and (12), we see that

sinhφ

coshφ
=

1

c

dx

dt

=⇒ tanhφ =
v

c
= β

as tanhφ = sinhφ
coshφ , so

γ =
1√

1− β2

=
1√

1− tanh2 φ

= coshφ

by the identity cosh θ ≡ 1√
1−tanh2 θ

.

Hence the Lorentz boost for a time dimension and and one parallel spatial dimension is given
by: (

γ −γβ
−γβ −γ

)
=

(
coshφ − sinhφ
− sinhφ coshφ

)
seeing as sinhφ = coshφ tanhφ. Indeed, this is the hyperbolic rotation matrix for two dimen-
sions, and so we have successfully created a way to think of Lorentz transformations purely as
rotations.

If we add back in the other two spatial dimensions, our full transformation matrix becomes
γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 =


coshφ − sinhφ 0 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1


which generates the equations

cdt′ = cdt coshφ− dx sinhφ,

dx′ = dx coshφ− cdt sinhφ,

dy′ = dy,

dz′ = dz.

This is a fairly nice way to compute Lorentz transformations. The parameter φ is usually known
as the rapidity and, unlike the actual speed, rapidities add linearly under boosts.

2.1.5 Mechanics in the Language of Four-Vectors

Problem: Four-Velocity

(a) As demonstrated, time dilation means that an object’s velocity relative to a frame S
determines how quickly time passes for that object, as observed by S. Hence, to fix the
passage of time at a constant rate we want to use the proper time — that is, the time as
measured by a frame that is always stationary relative to the object. Indeed, if we were to
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differentiate with respect to the time measured from S instead then the zeroth component
of the four-velocity vector would be

u0 =
cdt

dt
= c

and so would be constant, which makes no sense. We must differentiate with respect to
proper time because it is the only invariant quantity of time.

A rather nice interpretation of the four-velocity (differentiating with respect to proper
time τ , of course), is that it’s simply the unit tangent vector to the world line of the
object — that is, its path through all of spacetime.

(b) Consider an object moving at velocity u in the x-direction relative to a reference frame
S. We wish to find its velocity relative to a frame S′ travelling at a velocity v in the
x-direction relative to S.

If in frame S the object has four-velocity uµ = (u0, u1, u2, u3) and in frame S′ has four-
velocity u′µ = (u′0, u′1, u′2, u′3), then a Lorentz boost between the frames gives

u′0

u′1

u′2

u′3

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



u0

u1

u2

u3


or, in expanded form,

u′0 = γ(u0 − βu1), (13)

u′1 = γ(u1 − βu0), (14)

u′2 = u2,

u′3 = u3.

By the definition of four-velocity, uµ =
dxµ

dτ
where τ is the proper time of the object, so

u0 = c
dt

dτ
(15)

and

u1 =
dx

dτ
. (16)

Now, we have derived that where λ is the Lorentz factor between S and the object’s proper
frame, time dilation means

dt = λ dτ

and so we can simplify eq. (15) and eq. (16), giving

u0 = c
dt

dτ
= cλ

dτ

dτ
= cλ

and similarly,

u1 =
dx

dτ
= λ

dx

dt
= λu

since u is the x-velocity of the object in frame S. So, the Lorentz transformation in
eq. (13) and eq. (14) gives

u′0 = γ(cλ− βγu),

u′1 = γ(λu− βcλ),
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and hence the new velocity of the object in the x-direction as measured from S′ is simply

u′ =
dx′

dt′
=
c

dx′

dτ

c
dt′

dτ

=
cu′1

u′0

=
cγλ(u− βc)
γλ(c− βu)

=
cu− vc
c− vu

c

=
u− v
1− uv

c2
.

Hence we have derived one of the Einstein addition laws. For the other laws we must use
an inverse Lorentz transformation on the four-velocity to boost from frame S′ to frame S:

u0

u1

u2

u3

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1


−1

u′0

u′1

u′2

u′3



=


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1



u′0

u′1

u′2

u′3

 .

This matrix inversion results in the equations

u0 = γ(u′0 + βu′1), (17)

u1 = γ(u′1 + βu′0), (18)

u2 = u′2,

u3 = u′3.

By the same argument as before, where now µ is the Lorentz factor between S′ and our
moving object’s proper frame, we see

u′0 = µc

and
u′1 = µu′

since u′ is the x-velocity of the object in the frame S. So, eq. (17) and eq. (18) give

u0 = γ(µc+ βµu′)

u1 = γ(µu′ + βµc)
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and thus our transformed velocity in frame S is:

u =
dx

dt
=
c

dx

dτ

c
dt

dτ

=
cu′

u0

=
cγµ(u′ + βc)

γµ(c+ βu′)

=
cu′ + cv

c+ vu
c

=
u′ + v

1 + uv
c2

which is the other Einstein velocity addition law as desired.

Problem: Invariance of Energy and Momentum

We are given that the definition of four-momentum is

pµ = m0u
µ (19)

where m0 is the rest mass, and also that equivalently

pµ =


E
c
px
py
pz

 . (20)

So, we can calculate the (square) length of the four-momentum in two different ways. Indeed,
the length of a spacetime four-vector is a Lorentz invariant as shown previously.
First, by eq. (19), the squared length is

pµp
µ = m2

0uµu
µ. (21)

However, we know from the previous problem that the four velocity is

uµ =


γc
γux
γuy
γuz


and so the squared length of the four-velocity is just

uµu
µ =


−γc
γux
γuy
γuz

 ·

γc
γux
γuy
γuz


= −γ2c2 + γ2u2x + γ2u2y + γ2u2z

= −γ2c2 + γ2u2
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where u is the magnitude of the three-velocity. However, simplifying further, this becomes

uµu
µ = γ2(u2 − c2)

= γ2c2

(
u2

c2
− 1

)

= γ2c2
(
− 1

γ2

)
= −c2

and so the magnitude of the four-momentum as given by eq. (21) is

pµp
µ = m2

0(−c2)
= −m2

0c
2. (22)

Now, we shall work out the same quantity using the definition in eq. (20). Taking the squared
magnitude of this four-vector gives

pµp
µ =


−E

c
px
py
pz

 ·


E
c
px
py
pz


= −E

2

c2
+ p2x + p2y + p2z

= −E
2

c2
+ p2 (23)

where p is the magnitude of the three-momentum. So, equating eq. (22) and eq. (23),

−m2
0c

2 = −E
2

c2
+ p2

=⇒ E2 = p2c2 +m2
0c

4,

which is the well-known relativistic energy-momentum relation that we were looking for.

Problem: Four-Acceleration

Four-acceleration is simply the derivative of four-velocity with respect to proper time. We have
shown that the magnitude of the four-velocity is always −c2, that is

uµu
µ = −c2

and so, differentiating this using the chain rule, we get

d

dτ
(uµu

µ) =
d

dτ
(−c2)

=⇒ 2uµ
duµ

dτ
= 0

=⇒ uµa
µ = 0

since four-acceleration is the derivative of four-velocity with respect to proper time.

In other words, the dot product uµa
µ of four-acceleration and four-velocity is always identically

zero.
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2.2 Relativistic Electrodynamics and Tensors

2.2.2 Four-Current

Problem: The Continuity Equation

(a) Consider some volume V bounded by surface S in three-dimensional space. Now, the total
current out of V at any point in time is

− ∂q
∂t

=

‹

S

#—
j · n̂ dS.

where q is the total charge contained by V ,
#—
j is the flux (current density) and n̂ is the

unit normal vector to the surface S. By the divergence theorem, this becomes

− ∂q
∂t

=

˚

V

div(
#—
j ) dV (24)

which makes sense intuitively; the total charge flow out of the shape is going to be the
same as the sum of all the net charge flows out of every point in the shape (the sum of
divergences at every point in V ).

Now we use the fact that the total charge is

q =

˚

V

ρ dV

given charge density ρ, so that by eq. (24),

− ∂

∂t

˚

V

ρdV =

˚

V

div
#—
j dV

=⇒
˚

V

[
∂ρ

∂t
+ div

#—
j

]
dV = 0.

Since this must hold true for any value, V , it is clear that the integrand itself must be
identically zero; that is,

∂ρ

∂t
+ div

#—
j = 0

=⇒ #—∇ · #—
j = − ∂ρ

∂t

which is what was to be shown.

Intuitively, this was obvious: all this law says is that the only way the charge density
at some point will increase is if there is a net flow of charge into that point (a negative
divergence).

(b) If we are now making relativistic considerations, our charge density becomes

ρ = γρ0
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due to length contraction, where ρ0 is the rest charge density. Hence, the continuity
equation we just derived expands out to become

∂

∂x
(γρ0ux) +

∂

∂y
(γρ0uy) +

∂

∂z
(γρ0uz) = − ∂

∂t
(γρ0)

=⇒ ∂

∂t
(γρ0) +

∂

∂x
(γρ0ux) +

∂

∂y
(γρ0uy) +

∂

∂z
(γρ0uz) = 0.

using the definition of current density.

Now, using the definition of four-velocity as

uµ =


γc
γux
γuy
γuz


we re-write this:

1

c

∂

∂t
(ρ0u

0) +
∂

∂x
(ρ0u

1) +
∂

∂y
(ρ0u

2) +
∂

∂z
(ρ0u

3) = 0

and since our standard four-vector components are

x0 = ct,

x1 = x,

x2 = y,

x3 = z,

we may re-write this again as

∂

∂x0
(ρ0u

0) +
∂

∂x1
(ρ0u

1) +
∂

∂x2
(ρ0u

2) +
∂

∂x3
(ρ0u

3) = 0

or equivalently,
∂µ(ρou

µ) = 0 ⇐⇒ ∂µj
µ = 0.

This tells us that the four-dimensional divergence of the current density four-vector is
identically zero, a rather beautiful way of explaining conservation of charge: at any point
in spacetime there is no net flow of charge into or out of that point. In other words, there
are no sources or sinks of charge in the universe; charge cannot be created or destroyed.

2.2.3 Four-Potential

For reference, Maxwell’s four equations of electromagnetism are as follows:

#—∇ · #—

E =
ρ

ε0
, (25)

#—∇ · #—

B = 0, (26)

#—∇× #—

E = − ∂
#—

B

∂t
, (27)

c2
#—∇× #—

B =

#—
j

ε0
+
∂

#—

E

∂t
. (28)
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Problem: Maxwell’s Equations in Terms of the Potentials

(a) Gauss’ law for magnetism (eq. (25)) specifies that the divergence of a magnetic field is
identically zero — that is, it is a solenoidal vector field. This implies that there exists a
vector potential

#—

A such that
#—

B =
#—∇× #—

A (29)

as Helmholtz’s theorem [1] implies that the divergence of the curl of a vector field is
identically zero.

Now substituting this into Faraday’s law (eq. (27)), we get

#—∇× #—

E = − ∂

∂t
(

#—∇× #—

A)

=⇒ #—∇× #—

E = − #—∇× ∂
#—

A

∂t

=⇒ #—∇×

(
#—

E +
∂

#—

A

∂t

)
= 0.

This is true as both the cross product and derivative functions are distributive over addi-
tion.

This implies that
#—

E+
∂

#—

A

∂t
is a conservative vector field and so, also because of Helmholtz’s

theorem, may be written as the gradient of some scalar field φ that we will call the scalar
potential.1 So,

#—

E +
∂

#—

A

∂t
= − #—∇φ

=⇒ #—

E = − #—∇φ− ∂
#—

A

∂t
(30)

as desired.

(b) To achieve this reformulation of Maxwell’s equations in terms of potential, we start by
substituting our newly derived eq. (30) into Gauss’ law (the first Maxwell equation), giving

#—∇ ·

(
− #—∇φ− ∂

#—

A

∂t

)
=

ρ

ε0

=⇒ − ∂

∂t
(

#—∇ · #—

A)−∇2φ =
ρ

ε0
(31)

and similarly, we now substitute eq. (29) into Ampere’s law (the fourth Maxwell equation):

c2
#—∇× (

#—∇× #—

A) =

#—
j

ε0
+
∂

#—

E

∂t
.

Dividing by c2 and substituting in eq. (30) gives

#—∇× (
#—∇× #—

A) =

#—
j

c2ε0
+

1

c2
∂

∂t

(
− #—∇φ− ∂

#—

A

∂t

)
1We made φ negative to preserve its physical meaning.
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and using the identity
#—∇× (

#—∇× #—

C) ≡ #—∇(
#—∇ · #—

C)−∇2 #—

C , this becomes

#—∇(
#—∇ · #—

A)−∇2 #—

A =

#—
j

c2ε0
− 1

c2
#—∇ ∂φ

∂t
− 1

c2
∂2

#—

A

∂t2

=⇒ #—∇
(

#—∇ · #—

A +
1

c2
∂φ

∂t

)
+

1

c2
∂2

#—

A

∂t2
−∇2 #—

A =

#—
j

c2ε0
. (32)

The values of A and φ we are using here are not unique2 and so we have some freedom of
choice which we will choose to exercise by setting the value of

#—∇ · #—

A — that is, we will fix
the divergence of the vector potential

#—

A. This choice us what is known as gauge freedom.
Looking at eqs. (31) and (32), and especially at the leftmost term of eq. (32), we see that
everything will simplify down very nicely if that term is zero - that is, if

#—∇ ·A = − 1

c2
∂φ

∂t
.

In fact, this choice is known as the Lorenz gauge. In this case, eq. (32) becomes

0 +
1

c2
∂2A

∂t2
−∇2 #—

A =

#—
j

c2ε0
(33)

and eq. (31) becomes
1

c2
∂2φ

∂t2
−∇2φ =

ρ

ε0
. (34)

Indeed, using the definition of the d’Alembertian and the fact that c = 1√
µ0ε0

, eqs. (33)

and (34) simplify to
�2 #—

A =
#—
j µ0 (35)

and

�2φ = c2µ0ρ

=⇒ �2

(
φ

c

)
= cµ0ρ. (36)

These are the equations we were to derive (the constants as printed in the question paper
are incorrect).

(c) i. Suppose we apply the d’Alembertian operator to a Lorentz-boosted four-vector xµ.
To say that �2 is Lorentz invariant means this gives the same result as applying the
d’Alembertian operator before the Lorentz transformation.

2What I mean by this is that there are many potentials which will generate the same field and so we may
choose one such potential.
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We shall prove this; where Λνµ is the Lorentz transformative matrix,

�2Λνµx
µ = �2


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



x0

x1

x2

x3



= �2


γ(x0 − βx1)
γ(x1 − βx0)

x2

x3



=


�2γ(x0 − βx1)
�2γ(x1 − βx0)

�2x2

�2x3



=


�2x0 − β�2x1)
γ(�2x1 − β�2x0)

�2x2

�2x3



=


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



�2x0

�2x1

�2x2

�2x3


= Λνµ�

2xµ.

Thus, we have used the fact that �2 is distributive over addition (since it is made
up of sums of second partial derivatives, all of which are themselves distributive over
addition) to show that the d’Alembertian operator is indeed Lorentz invariant.

Now, using the given definition of the four-potential Aµ,

�2Aµ =

�2
(
φ
c

)
�2 #—

A


which according to eqs. (35) and (36) gives

�2Aµ =

(
µ0ρc

µ0
#—
j

)
=

(
µ0ρc
µ0ρ

#—u

)
.

The charge density ρ in the moving frame is related to the rest charge density ρ0 due
to the length contraction by

ρ = γρ0

and therefore

�2Aµ =

(
µ0ρ0γc
µ0ρ0γ

#—u

)
= µ0ρ0u

µ

where uµ is the four-velocity. Since uµ is a valid four-vector, �2Aµ is a four-vector,
and since �2 is Lorentz invariant, Aµ is also a four-vector.
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ii. The quantity dV
r is in fact not Lorentz invariant; consider the following counterex-

ample.

Let dV be some small volume dx dy dz and r be the distance from the small volume
to some point in the y direction. If we perform a Lorentz boost with velocity v in the
x-direction then due to length contraction the volume dV will contract. However, the
length r is perpendicular to the boost direction and so its value will be unaffected.
Thus the quantity dV

r will be decreased. It is therefore clear that dV
r cannot be

Lorentz invariant.

We assume that we are instead asked to show that dV
r is Lorentz covariant, meaning

that it transforms according to the rules of the Lorentz transformations.

Scalar potential is given by

φ =

ˆ
V

ρdV

4πε0r

and vector potential is given by

#—

A =

ˆ
V

µ0
#—
j dV

4πr
,

so contravariant four-potential is

Aµ =


´ ρ dV

4πcε0r

´ µ0
#—
j dV
4πr

 =
µ0
4π

ˆ (
ρc
#—
j

)
dV

r
=
µ0
4π

ˆ
jµ

dV

r
. (37)

Performing a Lorentz boost in the x-direction gives the new four-potential therefore
as

A′µ =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1





´ ρ dV
4πcε0r´ µ0jx dV
4πr

´ µ0jy dV
4πr

´ µ0jz dV
4πr



=



γ
(´ ρ dV

4πcε0r
− β
´ µ0jx dV

4πr

)
γ
(´ µ0jx dV

4πr − β
´ ρ dV

4πcε0r

)
´ µ0jy dV

4πr

´ µ0jz dV
4πr


.

Combining integrals and using the fact that c = 1√
µ0ε0

, this becomes

A′µ =


´
γ
(
µ0ρc
4π − β

µ0jx
4π

)
dV
r´

γ
(
µ0jx
4π − β

µ0ρc
4π

)
dV
r´ µ0jy

4π
dV
r´ µ0jz

4π
dV
r

 .
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Taking the integral outside of the vector, this becomes

A′µ =

ˆ

γ(ρc− βjx)
γ(jx − βρc)

jy
jz

 µ0 dV

4πr

=
µ0
4π

ˆ
j′µ

dV

r
.

We have shown that boosting the four-current and then integrating it is equivalent
to integrating it and then boosting it, and so the quantity dV

r must be Lorentz
covariant, since it transforms according to the Lorentz transformations. Indeed, this
means every part of the right hand side of eq. (37) transforms according to the
Lorentz transformations, and therefore so must Aµ itself. Thus, Aµ is a four-vector.

(d) By combining eqs. (35) and (36) in vector form, we get�2 φ
c

�2 #—

A

 =

cρµ0
#—
j µ0

 ,

which we can write as

�2

 φ
c

#—

A

 =

cρµ0
#—
j µ0


=⇒ �2Aµ =

cρµ0
#—
j µ0

 (38)

as this is the definition of Aµ. Now, finding an expanded form for the current density
four-vector,

jµ = ρ0u
µ =

(
ρ0γc
ρ0γ

#—u

)
where #—u is the three-velocity. Due to length contraction, the charge density in the moving
frame is given by

ρ = γρ0

and so

jµ =

(
ρc
ρ #—u

)
=

(
ρc
#—
j

)
.

Therefore by eq. (38),
�2Aµ = µ0j

µ

as desired. This is a beautiful single equation representing all of electrodynamics.

Problem: Forces in Different Frames

We shall first consider how a general momentum four-vector behaves under a Lorentz transfor-
mation. Let pµ be the four-momentum in the unprimed frame and let p′ν be the four-momentum
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in the primed (proper) frame. Then,

p′ν = Λνµp
µ

=⇒


E′

c
p′x
p′y
p′z

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




E
c
px
py
pz



=⇒


E′

c
p′x
p′y
p′z

 =


γ
(
E
c − βpx

)
γ
(
px − βEc

)
py
pz


and so the boosted three-momentum is

#—

p′ =

p′xp′y
p′z

 =

γ(px − β
cE)

py
pz

 .

Note that we have assumed the primed frame is travelling with velocity v relative to the un-
primed frame in the x-direction only: this is without loss of generality as we can just choose
the direction of our x-axis.

So if
# —

Fe is the force in the unprimed frame and
# —

F ′ is the force in the primed frame, then by
Newton II

# —

F ′ =
d

#—

p′

dt′
=

(
d

#—

p′

dt

)
(

dt′

dt

)
but from the Lorentz transformation for four-displacement we know

cdt′ = γ(cdt− β dx)

=⇒ dt′ = γ dt− γ v
c2

dx

=⇒ dt′

dt
= γ − γ v

c2
dx

dt

=⇒ dt′

dt
= γ

(
1− v2

c2

)
=

γ

γ2
=

1

γ

and so

# —

F ′ = γ
d

#—

p′

dt

= γ
d

dt

γ
(
px − β

cE
)

py
pz



= γ


γ

(
dpx
dt
− β

c

dE

dt

)
dpy
dt

dpz
dt


.

Page 19 of 31



Relativistic Electrodynamics Submission PU Explorer Competition 2017

However if
# —

Fe =

FxFy
Fz

 then by Newton II the momentum time derivatives become forces and

so

# —

F ′ = γ


γ

(
Fx − β

c

dE

dt

)
Fy
Fz



=


γ2
(
Fx − v

c2
dE

dt

)
γFy

γFz

 .

This is almost very nice; now we may use the fact that the change in energy over time of the
particle (since this change is only due to the force

# —

Fe acting on it) is just the power,

dE

dt
=

# —

Fe ·

v0
0

 = Fxv

and so our primed force becomes

# —

F ′ =


γ2
(
Fx − v

c2
(Fxv)

)
γFy

γFz



=


γ2Fx

(
1− v2

c2

)
γFy

γFz



=


Fx

γFy

γFz

 . (39)

Thus, when a Lorentz boost is applied to a three-dimensional force vector, the component of
that force in the direction of the boost is unchanged and the other two components are increased
by a factor of γ.

Problem: Particles in a Wire

Note: this question is not particularly clear. We assume that firstly λ+ and λ− are the same
charge density but with opposite signs, and secondly that we are to take both electric and magnetic
forces into account in both frames.
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(a) We consider here a wire containing stationary positive particles and negative particles
moving at a velocity u. In the lab frame the positive particles have charge density λ and
the negative particles have charge density −λ, and there is a test particle of charge +q a
distance r from the wire moving at a velocity v parallel to the wire.

Clearly in the lab frame, there is no net charge in the wire and so the test charge will
experience no electric force. However, the test charge is moving and so will experience a
magnetic force of

#  —

FB = q #—v × #—

B

where
#—

B is the magnetic field. A simple application of Ampère’s law or Biot-Savart gives
this field as

B =
µ0I

2πr

radially outwards, where I is the conventional current. So, as the flow of positive charge
is at speed −u,

I = (−λ)(−u)

= λu

and hence

B =
µ0λu

2πr
.

So, the magnetic field is of magnitude

FB = qvB =
qvµ0λu

2πr
.

(b) Now let us consider the rest frame of the test charge. The current density four-vector in
the lab frame due to the positive charges is

jµ+ =


λc
0
0
0


and due to the negative charges is

jµ− =


−λc
−λ(−u)

0
0

 =


−λc
λu
0
0

 ,

assuming the motion is in the x-direction. Performing a Lorentz boost (with velocity v) to
the rest frame of the test charge gives the new current density four-vector for the positive
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charges as

j′µ+ =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



−λc
λu
0
0



=


γ(λc− β · 0)
γ(0− β · λc)

0
0



=


γλc
−βλγc

0
0


and the current density four-vector for the negative charges is

j′µ− =


γ(−λc− βλu)
γ(λu− β(−λc))

0
0



=


−γλ(βu+ c)
γλ(u+ βc)

0
0

 .

Hence, the new charge density of the positive charges is given by the first component of
j′µ+ :

cλ′+ = γλc

=⇒ λ′+ = γλ

and similarly for the negative particles,

cλ′− = −γλ(βu+ c)

=⇒ λ′− = −γλ
(
vu

c2
+ 1

)
.

The net charge density in the wire in the test charge’s rest frame is therefore

λ′ = λ′+ + λ′−

= γλ− γλ
(
vu

c2
+ 1

)
= γλ

(
1− vu

c2
− 1

)
= γλ

vu

c2
.

Now, in this frame the test charge is stationary so cannot experience a magnetic force.
The electric field near a line of charge is given by Coulomb’s law as

E′ =
λ′

2πε0r
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and so the test charge experiences an electric force of

F ′E =
qλ′

2πε0r
=

qγλvu

2πε0c2r

but 1
ε0c2

= µ0 and thus

F ′E =
qγλµ0vu

2πr
= γFB.

Comparison with our force transformation law in eq. (39) shows us that this means the
magnetic force in the unprimed frame is equivalent to the electric force in the primed
frame; the electric force is just the result of transforming the magnetic force, and vice
versa.

This very nicely shows that electric and magnetic fields are really one and the same.

2.2.4 The Electromagnetic Field Tensor

a) We will use eqs. (29) and (30) to find expressions for each component of the electric and
magnetic fields in terms of the vector and scalar potential.

Let
#—

B =

BxBy
Bz

,
#—

E =

ExEy
Ez

 and
#—

A =

AxAy
Az

. Evaluating the cross product in eq. (29)

gives

Bx =
∂Az
∂y
− ∂Ay

∂z
, (40)

By =
∂Ax
∂z
− ∂Az

∂x
, (41)

Bz =
∂Ay
∂x
− ∂Ax

∂y
. (42)

Now similarly evaluating each component of eq. (30) leads to three more relationships:

Ex = − ∂φ
∂x
− ∂Ax

∂t
, (43)

Ey = − ∂φ
∂y
− ∂Ay

∂t
, (44)

Ez = − ∂φ
∂z
− ∂Az

∂t
. (45)

Now, we defined contravariant four-potential as

Aµ =


φ
c
Ax
Ay
Az

 =


A0

A1

A2

A3


and so since we are using the Minowski metric signature (−,+,+,+) the covariant four-
potential is

Aµ =


−φ
c

Ax
Ay
Az

 =


−A0

A1

A2

A3

 .
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Using this and the definition of four-gradient, we can re-write eqs. (40) to (45) using only
four-gradient and four-potential:

Bx = ∂2A3 − ∂3A2, (46)

By = ∂3A1 − ∂1A3, (47)

Bz = ∂1A2 − ∂2A1, (48)

Ex = c∂1A0 − c∂0A1, (49)

Ey = c∂2A0 − c∂0A2, (50)

Ez = c∂3A0 − c∂0A3. (51)

b) Therefore, we can write all of the field components in one vector:

Bx

By

Bz

Ex
c

Ey

c

Ez
c


=



∂2A3 − ∂3A2

∂3A1 − ∂1A3

∂1A2 − ∂2A1

∂1A0 − ∂0A1

∂2A0 − ∂0A2

∂3A0 − ∂0A3.


(52)

The symmetry in the right hand side inspires us to define a tensor to represent all of this;
a useful quantity that we call a field strength tensor:

Tµν := ∂µAν − ∂νAµ.

c) If we switch the positions of the indices µ and ν, then we have

Tνµ = ∂νAµ − ∂µAν
= −(∂µAν − ∂νAµ)

= −Tµν

That is, flipping the indices negates the tensor. (The tensor is ‘anti-symmetric’.) If the
indices are the same (ν = µ) then (not using the summation convention)

Tνµ = Tµµ = ∂µAµ − ∂µAµ
= 0

and so the diagonals of the tensor are zero.

The field strength tensor is indexing through µ = 0, 1, 2, 3 and ν = 0, 1, 2, 3 and so has
16 entries altogether. Of these, flipping the indices accounts for 8 and setting the indices
equal accounts for a further 2 (four in total) leaving 6 distinct entries. This makes sense
as the vector in eq. (52) has 6 components!

d) We will now write the field strength tensor Tµν out as a matrix, indexing the rows with µ
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and the columns with ν:

Tµν =


T00 T01 T02 T03
T10 T11 T12 T13
T20 T21 T22 T23
T30 T31 T32 T33



=



(∂0A0 − ∂0A0) (∂0A1 − ∂1A0) (∂0A2 − ∂2A0) (∂0A3 − ∂3A0)

(∂1A0 − ∂0A1) (∂1A1 − ∂1A1) (∂1A2 − ∂2A1) (∂1A3 − ∂3A1)

(∂2A0 − ∂0A2) (∂2A1 − ∂1A2) (∂2A2 − ∂2A2) (∂2A3 − ∂3A2)

(∂3A0 − ∂0A3) (∂3A1 − ∂1A3) (∂3A2 − ∂2A3) (∂3A3 − ∂3A3)



=



0 −Ex
c −Ey

c −Ez
c

Ex
c 0 Bz −By

Ey

c −Bz 0 Bx

Ez
c By −Bx 0


.

This tensor behaves very nicely under Lorentz transformations and can be used to repre-
sent all of the electromagnetic fields at a point in space.

2.2.5 The Transformations of Fields

a) We are given that to Lorentz boost the electromagnetic field matrix we apply the trans-
formation, in tensor notation,

T ′µν = Λµ
λTλσΛσν ,

or in matrix notation
T ′ = ΛTΛᵀ
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where Λᵀ is the matrix transpose of Λ. Therefore, for a boost in the x-direction,

T ′ = Λ



0 −Ex
c −Ey

c −Ez
c

Ex
c 0 Bz −By

Ey
c −Bz 0 Bx

Ez
c By −Bx 0




γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



=


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1





γβ
c Ex

−γ
c Ex

−Ey

c
−Ez
c

γ
cEx

−βγ
c Ex Bz −By

γ
cEy + βγBz −γBz − βγ

c Ey 0 Bx

γ
cEz − βγBy γBy − βγ

c Ez −Bx 0



=



0 γ2β2

c Ex − γ2

c Ex −βγBz − γ
cEy γβBy − γ

cEz

γ2

c Ex −
γ2β2

c Ex 0 γBz − γβ
c Ey

γβ
c Ez − γBy

γ
cEy + γβBz −γBz − γβ

c Ey 0 Bx

γ
cEzγβBy γBy − γβ

c Ez −Bx 0


.

This is a rather large matrix, but by comparing its entries with the definition of the
electromagnetic field tensor, we can identify the effects of the transformation:

E′x = γ2(1− β2)Ex = Ex, (53)

E′y = γ(Ey + vBz), (54)

E′z = γ(Ez − vBy), (55)

B′x = Bx, (56)

B′y = γ

(
By −

β

c
Ez

)
, (57)

B′z = γ

(
Bz +

β

c
Ey

)
. (58)

The rightmost terms of these six equations can be thought of as elements of the cross

product #—v × #—

E or #—v × #—

B where #—v =

v0
0

, and formulating the equations in this way

leads nicely to the generalised field transformations given in the question paper.

b) We will now use the general form of the field transformation equations as given in the
question paper. Consider a particle travelling at some velocity #—v . In the particle’s rest
frame, the magnetic field is zero and the electric field given by Coulomb’s law is

#—

E =
q

4πε0r3
#—r

where #—r is the position vector relative to the particle. Applying3 a Lorentz transformation
with velocity − #—v from frame S (where the particle has zero velocity) to frame S′ (where

3We boost with velocity − #—v as we are going from the particle’s rest frame ‘back’ to the frame in which it is
travelling at velocity #—v . This is essentially an inverse Lorentz transformation.
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the particle has velocity #—v ), we know from the field transformation equations that in the
direction of the boost, the new magnetic field is

B′‖ = B‖ = 0

and in the two directions perpendicular to the boost the new magnetic field is the two-
dimensional vector

#—

B′⊥ = γ

(
#—

B⊥ −
1

c2
(− #—v × #—

E)⊥

)
= γ

(
0 +

1

c2

(
#—v × q

4πε0r3
#—r

)
⊥

)

=
γ

c2

(
q

4πε0r3

)
( #—v × #—r )⊥

=
γµ0q

4πr3
( #—v × #—r )⊥

and so since the component of #—v × #—r parallel to the boost direction is zero by the definition
of the cross product, we may write

#—

B′ =

(
B‖
#—

B⊥

)
=

(
0

γµ0q
4πr3

( #—v × #—r )⊥

)
=
γµ0q

4πr3
( #—v × #—r ).

This is the Biot-Savart law for point charges. If we assume the direction parallel to the
boost is the x-direction, then

#—

B′ =
γµ0q

4πr3

v0
0

×
rxry
rz


=
γµ0q

4πr3

 0
−vrz
vry


=
γµ0qv

4πr3

 0
−rz
ry


and this expanded form shows that the magnetic field is essentially circular in shape, with
its centre of rotation as the axis of motion of the point charge. In other words, an electric
current moving in a straight line will produce a circular magnetic field around it.

c) The above proof is really ‘if and only if’ anyway, meaning that we have already proven
Coulomb’s law given Biot-Savart’s law for point charges. We’ll do it explicitly for clari-
fication though. If in our primed frame S′ the magnetic field is given by Biot-Savart as

#—

B′ =
γµ0q

4πr3
( #—v × #—r ),

then the fourth field transformation equation gives

γµ0q

4πr3
( #—v × #—r )⊥ = γ

(
#—

B⊥ −
1

c2
(− #—v × #—

E)⊥

)
.
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Since we know the magnetic field in frame S is zero,

γµ0q

4πr3
( #—v × #—r )⊥ = −γ 1

c2
( #—v × #—

E)⊥

=⇒ q

4πε0r3
( #—v × #—r )⊥ = ( #—v × #—

E)⊥

=⇒ #—

E⊥ =
q

4πε0r3
#—r ⊥

which is Coulomb’s law as desired. Of course, this is only in the two dimensions perpen-
dicular to the boost, because the forces are unchanged in the parallel direction and so
there would be no way to derive Coulomb’s law in this direction from Biot-Savart.4

The interchangeability of Coulomb’s law and Biot-Savart’s law in different reference frames
shows, as did the question about particles in a wire, that electric and magnetic forces are
truly the same phenomenon, with the magnetic force becoming an electric force if you
boost to the right reference frame and vice versa.

Indeed, although neither the electric nor magnetic forces are covariant5 under Lorentz
transformations, the total electromagnetic force is.

2.2.6 Field Transformation Problems

Problem: Moving Solenoid

Consider a stationary densely-wound solenoid of infinite length with N turns per unit length
through which is flowing a current I. At every point there is a uniform charge density, and so
in the centre of the solenoid there is no net electric field (due to the principle of superposition).

Figure 2: The electric field is radially inwards at all points and so cancels completely at the
centre.

However, there is a circular flow of current and so there is indeed a magnetic field. As we
have seen, a circular magnetic field is generated perpendicular to a moving point charge (and
therefore a current). Consider one ‘ring’ of the solenoid (we ignore the fact that it doesn’t
actually join up).

4Alternatively, we could have first found the electric field in S′ and used the full fields in S′ to do a reverse
transformation back to S, showing that Coulomb’s law holds. However, such an argument would be inescapably
circular since the fields in frame S′ depend on Coulomb’s law in S in the first place.

5Here covariant is defined to mean ‘transforms according to the Lorentz transformations’. In this case specif-
ically it means for the force to transform according to the force law derived in eq. (39).
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Figure 3: The middle loop shows the direction of current flow, and the top and bottom loops
show the generated magnetic field lines.

This circular magnetic field generated from every segment of current on that ring will be pointing
in the same direction at the centre of the ring, and so by the principle of superposition there
will be a very strong homogeneous magnetic field pointing along the central axis of the solenoid.
No such reinforcement occurs outside the solenoid, however, and so the magnetic field will be
quite weak.

Knowing the direction of the internal magnetic field, we may apply Ampère’s law (the fourth
Maxwell equation, given in eq. (28)) to find its strength.

This gives

#—∇× #—

B = µ0
#—
j +

1

c2
∂

#—

E

∂t

but the electric field is always zero, so

#—∇×B = µ0
#—
j .

Using the divergence theorem gives the integral form of this equation as

˛
C

#—

B · d #—

l = µ0IC

where C is some closed loop,
#—

l is an infinitesimal tangent element of C and IC is the current
enclosed passing through the surface enclosed by C.

Let’s pick our closed loop to be a rectangle through the centre of the solenoid with two sides of
length h parallel to the solenoid.
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h

Figure 4: We choose a rectangle of width h as our closed loop for integration.

Clearly the magnetic field has no component parallel to the two short sides of the rectangle,
and the magnetic field outside the solenoid is negligible, so the total line integral is just

˛
C

#—

B · d #—

l = Bh

where B is the magnitude of the magnetic field in the middle of the solenoid. So, Ampère’s law
gives

Bh = µ0IC .

This length h of rectangle contains Nh turns of the solenoid and so the enclosed current is

IC = NhI

so that

Bh = µ0NhI

=⇒ B = µ0NI.

Hence, in the solenoid’s rest frame there is in the middle of the solenoid a magnetic field parallel
to the x-axis of magnitude µ0NI, and no other electromagnetic fields.

Let’s now consider the frame in which the solenoid is moving along the x-axis with velocity
v. Performing a Lorentz boost to this frame, the equations for field transformations show
that the perpendicular components remain unchanged, so there will still be a magnetic field of
magnitude µ0NI along the x-axis, and similarly after the boost there will still be no other field
components.

Correction for Maxwell’s Equations

Ampère’s law (the fourth Maxwell equation, eq. (28)) states that

c2
#—∇× #—

B =

#—
j

ε0
+
∂

#—

E

∂t

and dividing through by c2 gives

#—∇× #—

B = µ0
#—
j +

1

c2
∂

#—

E

∂t
.
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Now taking the divergence of both sides,

#—∇ · ( #—∇× #—

B) =
#—∇ · (µ0

#—
j +

1

c2
∂

#—

E

∂t
)

= µ0
#—∇ · #—

j +
1

c2
#—∇ · ∂

#—

E

∂t

= µ0
#—∇ · #—

j +
1

c2
∂

∂t

#—∇ · #—

E

and substituting in Gauss’ law (the first Maxwell equation),

#—∇ · ( #—∇× #—

B) = µ0
#—∇ · #—

j +
1

c2
∂

∂t

ρ

ε0

= µ0
#—∇ · #—

j + µ0
∂ρ

∂t
.

However, the divergence of the curl of a vector field is always zero6. Indeed, this makes sense
as

#—

P · ( #—

P × #—

Q) ≡ 0 for any vectors
#—

P and
#—

Q, because the cross product
#—

P × #—

Q is perpendicular
to both

#—

P and
#—

Q and so makes a zero dot product with
#—

P . Using
#—∇ · ( #—∇× #—

B) ≡ 0 reduces the
equation to

0 = µ0
#—∇ · #—

j + µ0
∂ρ

∂t

⇐⇒ #—∇ · #—
j = − ∂ρ

∂t

and this is simply the continuity equation we derived earlier; that is, it ensures conservation of
charge.

Since this must always be true, we do require the
∂

#—

E

∂t
term otherwise we would come to

#—∇ · #—
j = 0

which is not always true. In fact, this second equation holds true only when

∂ρ

∂t
= 0

or in other words, when the charge density is static (does not change over time). So the corrected
form of Ampère’s law must be used whenever we have time-dependent charge density.

An example of such a problem would be a circuit with a capacitor. The charge density on
the plates of the capacitor is certainly not constant and so we must use the converted version
of Ampère’s law to find the magnetic field around a capacitor, no matter what the reference
frame.

End of Submission.
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