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Note:​ ​ ​ ​means​ ​a​ ​vector​ ​X,​ ​the​ ​bar​ ​serve​ ​to​ ​indicate​ ​that​ ​X​ ​is​ ​a​ ​vector.X  
 
The​ ​Barn​ ​Problem:  
As​ ​seen​ ​by​ ​the​ ​runner: 
The​ ​barn​ ​moves​ ​at​ ​-c:​ ​=>​ ​its​ ​Length​ ​is​ ​contracts​ ​to​ ​ .s′

P barn =
୪

P 0  
As​ ​a​ ​result,​ ​the​ ​pole​ ​does​ ​not​ ​fit​ ​into​ ​the​ ​barn. 
It​ ​follows​ ​that​ ​the​ ​paradox​ ​lies​ ​in​ ​the​ ​simultaneity​ ​of​ ​both​ ​ends​ ​of​ ​the​ ​pole​ ​being 
contained​ ​by​ ​the​ ​barn.  
Simultaneity​ ​is​ ​not​ ​a​ ​relativistic​ ​invariant. 
A​ ​devil’s​ ​advocate​ ​alternative​ ​device​ ​would​ ​be: 



 

 
If​ ​the​ ​farmer​ ​closes​ ​the​ ​door​ ​at​ ​t= does​ ​the​ ​pole​ ​fit​ ​or​ ​not?t = c

P 0  
Rigid​ ​body​ ​may​ ​not​ ​be​ ​a​ ​relativistic​ ​reality.​ ​Stopping​ ​one​ ​end​ ​of​ ​the​ ​pole​ ​with​ ​a 
wall​ ​cannot​ ​instantaneously​ ​transmit​ ​the​ ​information​ ​to​ ​the​ ​other​ ​end.​ ​This 
example​ ​is​ ​comparable​ ​to​ ​a​ ​falling​ ​slinky​ ​that​ ​levitates​ ​(youtube​ ​video) 
Invariance​ ​of​ ​spacetime: 

s − dt x y zd ′2 = c2 ′2 + d ′2 + d ′2 + d ′2
 
 

And: 
 {cdt cdt βdx}′ = ୪ − γ  

 {dz βcdt dx}′ = ୪ + ୪  
{dy y}′ = d  
{dz z}′ = d  
Substitution​ ​gives​ ​us 
s − (cdt dx) (− cdt x) y  d ′2 = ୪

2 − β 2 + ୪2 β + d 2 + d 2 + dz2  

y z  = 1
1−β2 (− cdt x) − cdt dx)[ β + d 2 ( − β 2] + d 2 + d 2  

y z  = 1
1−β2 dx βcdxdt c dt dt βcdxdt dx[ 2 − 2 + β2 2 2 − c2 2 + 2 − β2 2] + d 2 + d 2  

y z  = 1
1−β2 (1 )dx 1 )c dt[ − β2 2 − ( − β2 2 2] + d 2 + d 2  

− dt x y z= c2 2 + d 2 + d 2 + d 2  
s sd ′2 = d 2  

The​ ​spacetime​ ​interval​ ​is​ ​an​ ​invariant 



 

 
Time​ ​dilation: 
Consider​ ​a​ ​clock​ ​C’​ ​at​ ​rest​ ​in​ ​S’​ ​located​ ​at​ ​x’ 
At​ ​t’​1​​ ​: 

(t x )  t1 = ୪ ′1 + v
c2 ′  

Some​ ​time​ ​later​ ​C’​ ​time​ ​is​ ​t’​2​.​ ​A​ ​different​ ​clock​ ​C​2​​ ​in​ ​S​ ​passes​ ​by​ ​x’​1​​ ​in​ ​S’​ ​and 
gives  

(t x )  t2 = ୪ ′2 + v
c2 ′  

⇒​ ​​ ​ t t (t )  Δ =  2 − t1 = ୪ ′2 − t′1  
t Δt  Δ = ୪ ′  

​ ​⇒​ ​it​ ​follows​ ​that​ ​there​ ​has​ ​been​ ​time​ ​dilatation.t tΔ > Δ ′  
 
Real​ ​world​ ​example: 
Acceleration:​ ​Radioactive​ ​particles​ ​are​ ​accelerated​ ​to​ ​near​ ​C​ ​speed.​ ​In​ ​the​ ​Lab 
Frame​ ​they​ ​do​ ​not​ ​decay​ ​as​ ​fast​ ​as​ ​in​ ​the​ ​(----)​ ​frame​ ​=>​ ​One​ ​can​ ​study​ ​them. 
G.P.S​ ​atomic​ ​clocks​ ​time​ ​vary​ ​by​ ​ when​ ​compared​ ​with​ ​ground​ ​basedμs/day1  
clocks. 
 
Length​ ​contraction:  
In​ ​S’:​ ​​ ​l​0​​ ​=​ ​x’​2​-x’​1​​ ​at​ ​t 
In​ ​S:​ ​x’​1​​ ​=​ ​ (x​1​-vt)​ ​at​ ​t ୪  
x’​2​​ ​= (x​2​​ ​-vt) ୪  
From​ ​which​ ​ l Δl  Δ ′ = ୪  
⇒​ ​ ,​ ​and​ ​as​ ​a​ ​result,​ ​we​ ​observe​ ​the​ ​contraction​ ​of​ ​length.lΔ ′ =

୪

Δl  
or​ ​ ​ ​are​ ​not​ ​conserved​ ​but​ ​ is​ ​conserved.​ ​For​ ​instance,​ ​onexΔ tΔ s Δt xΔ = c2 2 − Δ 2  

might​ ​imagine​ ​a​ ​classical​ ​example:​ ​a​ ​rocket​ ​carrying​ ​Martha​ ​travels​ ​to​ ​planet​ ​Z​ ​at 
speed​ ​0.8​ ​c​ ​for​ ​30​ ​years​ ​(as​ ​observed​ ​by​ ​Bob​ ​on​ ​earth). 
 
 
The​ ​distance​ ​as​ ​seen​ ​by​ ​Bob​ ​is​ ​d=0.8*30=24​ ​light​ ​years.​ ​Martha​ ​measures 

30*0.6=18​ ​years​ ​and​ ​the​ ​distance​ ​is​ ​d​martha​=.80*18=14.4t Δt  Δ M = ୪ bob =  
Light/years. 



 

Relativity​ ​and​ ​rotation 

cdt’  
 
 

= 

 ୪  β  − ୪  0 0  
 
 
. 

cdt 

dx’ β  − ୪   ୪  0 0 dx 

dy’ 0 0 1 0 dy 

dz’ 0 0 0 1 dz 
 
One​ ​can​ ​write  

a) osh(φ)  ୪ = c  
b) β inh(φ)  ୪ = s  

Since​ ​ ,​ ​one​ ​can​ ​write​ ​ .(1 )  ୪
2 − β2 = 1 ୪) ୪β)  ( 2 − ( 2 = 1  

Next,​ ​this​ ​can​ ​be​ ​expressed​ ​as .​ ​This​ ​gives​ ​us​ ​a​ ​consistentosh (φ) inh (φ)c 2 − s 2 = 1  
statement. 
Then,​ ​by​ ​dividing​ ​b)​ ​by​ ​a)​ ​we​ ​find 
anh(φ) anh (β)t = β ⇔ φ = t −1  

The​ ​lorentz​ ​transformation​ ​can​ ​then​ ​be​ ​rewritten​ ​as​ ​a​ ​hyperbolic​ ​rotation​ ​around​ ​an 
axis​ ​perpendicular​ ​to​ ​(ot)​ ​and​ ​(ox) 

 
 
 

L= 

osh(φ)c  inh(φ)− s  0 0 

inh(φ)− s  osh(φ)c  0 0 

0 0 1 0 

0 0 0 1 
 
Four​ ​velocity:  
a)​ ​ in​ ​S.​ ​Two​ ​close​ ​events​ ​on​ ​the​ ​worldline​ ​arect, (t), (t), (t)x4 = ( x y z  

 and x x (t t) , x x , y y , z zx + d = c + d  + d  + d  + d   
The​ ​proper​ ​time​ ​between​ ​these​ ​events​ ​is  

τ t(1 )d = c
(c dt −dx −dy −dz )2 2 2 2 2 1/2

= d − c2
μ2 1/2  

Where​ ​ ; ; )u = ( dt
dx

dt
dy

dt
dz  

We​ ​thus​ ​obtain: (u)  dt
dτ = dt

dt′ = ୪  



 

The​ ​velocity​ ​used​ ​to​ ​be​ ​(---)​ ​in​ ​the​ ​Lorentz​ ​transformation​ ​is​ ​ u3  
b)​ ​The​ ​Lorentz​ ​transformation​ ​reads: 

(x t) x (dx dt )  x = ୪ ′ + v ⇒ d = ୪ ′ + v ′  
(t ) (dt )  t = ୪ ′ + c2

vx′ ⇒ t = ୪ ′ + c2
vdx′  

u = dt
dx = +vdt

dx′

1+
c2
v2

dt′
dx′ ⇒ u = v+u′

1+ u
c2
v2 ′

 

By​ ​reversing​ ​v​ ​one​ ​finds 
u′ = u−v

1−
c2
uv  

Invariance​ ​of​ ​the​ ​energy​ ​momentum:  
is​ ​a​ ​four-vector,​ ​so​ ​it’s​ ​length​ ​is​ ​conserved. P 4 = ,( c

E P)  

(1)(φ)P 2 − c2
E2

= cte  
But 

mc  E = ୪
2  

mv  P = ୪  

So​ ​in​ ​the​ ​proper​ ​frame​ ​S’: 
 P 4 = ;( c

mc2 0)  

And​ ​the​ ​invariant​ ​reads​ ​ (2)c− m2 2 = p′2 − c2
E2

 
Combining​ ​1​ ​and​ ​2​ ​leads​ ​us​ ​to: 
 

c cE2 = p2 2 + m2 4  

 
Four-acceleration:  

​ ​(invariant)v · v = cte  
(v ) vd

dt′ · v = 0 ⇔ 2 dt′
dv = 0 ⇔ v · a = 0  

 
Continuity​ ​equation:  
Let​ ​Q​ ​be​ ​the​ ​charge​ ​contained​ ​by​ ​a​ ​fixed​ ​volume​ ​Ω 

 dΩQ = ∫
 

Ω
ρ  



 

ain oss s f lux of  charge through ∂Ω∂t
∂Q = G − L =  − ∫

 

∂Ω
j · d ←   

Since​ ​ ​ ​is​ ​fixed:Ω  

dΩ  dΩ∂
∂t ∫

 

Ω
ρ = ∫

 

Ω
∂t
∂ρ  

By​ ​using​ ​the​ ​divergence​ ​theorem:​ ​ s dΩ∫
 

∂Ω
j · d = ∫

 

Ω
∇ · j  

 

( ) dΩ∫
 

Ω
∂t
∂ρ + ∇ · j = 0 ⇒ ∂t

∂ρ + ∇ · j = 0  

j∂t
∂ρ + ∇ · j = 0 ⇔ ∂(ct)

∂(cρ) + ∇ · j = 0 ⇔ ∑
 

μ
∂μ

μ = 0  

j⇔ ∂μ
μ = 0  

The​ ​four​ ​dimensional​ ​divergence​ ​of​ ​ is​ ​null.jμ  
∂μ = 1

∂(ct) + ∂
∂x + ∂

∂y + ∂
∂z  

 
Maxwell’s​ ​equations​ ​in​ ​terms​ ​of​ ​the​ ​potential:  

(1)​ ​​ ​​ ​​ ​​ ​​ ​​ ​ (3)∇ · E = ρ
ε0

∇ · B = 0  

(2)​ ​​ ​​ ​​ ​ (4)−∇⋀ E = ∂t
∂B  j∇⋀ B = μ0 + 1

c2 ∂t
∂E

  

∇ · B = 0 ⇒  

​ ​(5)B = ∇⋀ A  

− − )⇒ ∇⋀ E = ∂ ∂t
∇⋀A = ∇⋀ ( ∂t

∂A  

 ⇒ ∇ E[ + ∂t
∂A] = 0 ⇒  

(6)− φE = ∂t
∂A − ∇  

A  ∇⋀ B = ∇⋀ ∇( ⋀ A) = ∇ ∇( · A) − ∇2  

j  = μ0 + 1
c2

∂
∂t − φ[ ∇ − ∂t

∂A]  

(7)A j  ⇒ 1
c2 ∂t2

∂ A2
− ∇2 = μ0 − ∇ ∇[ · A + 1

c2
∂
∂t]  



 

​ ​is​ ​defined​ ​as​ ​modulo​ ​ ​ ​where​ ​ ​ ​represents​ ​any​ ​function.A f∇ f  
A f )B = ∇⋀ ( + ∇ = ∇⋀ A  

is​ ​defined​ ​as​ ​modulo​ ​φ ∂t
∂f  

− (φ ) − φE = ∂t
∂(A+∇f ) − ∇ − ∂t

∂f = ∂t
∂A − ∇  

To​ ​remove​ ​the​ ​degree​ ​of​ ​freedom,​ ​we​ ​set 
(Lorentz​ ​gauge)∇ · A + 1

c2 ∂t
∂φ = 0  

We​ ​then​ ​find: 
j 1

c2 ∂t2
∂ A2

− ∇ · A = μ0 ⇔  

 

(8)A j                                         □2 = μ0  

Equation​ ​(1)​ ​becomes 
 ∇ − φ[ ∇ − ∂t

∂A] = ρ
ε0

 

φ (∇ )− ∇2 − ∂
∂t · A = ρ

ε0
 

And​ ​by​ ​using​ ​the​ ​gauge​ ​equation: 

φ1
c2 ∂t2

∂ φ2

− ∇ = φ
ε0

 

φ□2 = ρ
ε0

 

⇒ □2
c
φ = ρ

ε c0
 

But​ ​ μ c cε0 0
2 = 1 ⇒ ε0 = 1

μ c0
 

cρ□2
c
φ = μ0  

 
Invariance​ ​of​ ​the​ ​d’alembertian:  

− ∂□2 = 1
c2

∂
∂t2

− ∇2 = ∂μ
μ  

The​ ​d’alembertian​ ​is​ ​a​ ​dot​ ​product,​ ​So​ ​it​ ​is​ ​invariant 
Proof​:​ ​ B B − b a b b b )A4 4 = Aμ

μ = a0 0 + ( 1
1 + a2

2 + a3
3  

With​ ​A =  
[ , , , ]​ta0 a1 a2 a3

 

B =  
[ , , , ]​tb0 b1 b2 b3  



 

Transforming​ ​the​ ​coordinates​ ​from​ ​ S → S′  
​ ​(a a )  a′0 = ୪ 0 − β 1 (a a )  a′1 = ୪ 1 − β 0  
​ ​(b b )  b′0 = ୪ 0 − β 1 (b b )  b′1 = ୪ 0 − β 1  

− (a a )୪(b b ) (a a )୪(b b ) b b  A′ · B′ = ୪ 0 − β 1 0 − β 1 + ୪ 1 − β 0 1 − β 0 + a2 2 + a3 3  
− ((1 )(a b b ) b b  = ୪

2 − β2
1 1 − a0 0 + a2 2 + a3 3  

− b b b b= a0 0 + a1 1 + a2 2 + a3 3  
= A · B  
A′ · B′ = A · B  
Row 

​ ​is​ ​an​ ​operator.​ ​It​ ​does​ ​not​ ​have​ ​any​ ​length.​ ​Consequently,​ ​it​ ​is​ ​inaccurate​ ​to□2  
refer​ ​to​ ​a​ ​Lorentz​ ​invariant. 

means​ ​that​ ​Maxwell’s​ ​equations​ ​are​ ​invariant​ ​(in​ ​the​ ​way​ ​they​ ​are​ ​written)□2 = □′2  
A A□2 = □′2 ⇔ □2 μ = □′2 ′μ  

​ ​is​ ​a​ ​one​ ​component​ ​tensor​ ​that​ ​is​ ​Lorentz​ ​invariant​ ​=>​ ​It​ ​is​ ​a​ ​four​ ​vectorA⇒  μ  

ii)​ ​ (r) dvΦ =  1
4πε0

∫
 

Ω

ρ(r )′
r−r| ′| ′  

 

In​ ​S​ ​at​ ​t: ​ ​​ ​v  dx  dy  dzd ′S =  ′ ′ ′  r| − r′|S = √(x ) y ) z )− x′ 2 + ( − y′
2 + ( − z′ 2  

In​ ​S’​ ​at​ ​t:​ ​ ​ ​v dx dy dz  d ′S′ = ୪ ′ ′ ′  r| − r′|S′ = √୪ (x ) y ) z )2 − x′ 2 + ( − y′
2 + ( − z′ 2  

=dv′s
r−r S| ′|  

/ dvs
r−r S| ′| ′  

D) 
(1) 

( )□2
c
φ = μ0

cρ
⇒ □2

( 
/cφ  

)​=​( 
μ0

cρ  
) 

A j□2 = μ0 A  jμ0



 

A⇒ □2 μ = jμ  
It​ ​is​ ​a​ ​compact​ ​form​ ​of​ ​(1) 
Maxwell​ ​equations​ ​are​ ​not​ ​only​ ​potential​ ​equations 
A j□2 = μ0  
φ□2 = ρ

ε0
 

They​ ​must​ ​be​ ​supplemented​ ​with​ ​the​ ​Gauge​ ​equation. 
∇ · A + 1

c2 ∂t
∂φ = 0  

∇ · A + ∂
∂ct c

φ = 0  
A∂μ

μ = 0  
Now​ ​taking​ ​the​ ​four​ ​divergence​ ​of​ ​ A□2 μ = jμ  

□ A ∂ A j∂μ
2 μ = □2

μ
μ = 0 = ∂μ

μ  
So​ ​the​ ​notation​ ​is​ ​coherent,​ ​and​ ​we​ ​can​ ​write​ ​maxwell’s​ ​equations​ ​are​ ​equivalent 
to: 
A□2 μ = jμ  

 
Forces​ ​in​ ​different​ ​frames:  
In​ ​S:​ ​ EF = q  

In​ ​S’:​ ​ ​ ​Because​ ​physical​ ​laws​ ​are​ ​invariants(E )F ′ = q ′ + v′
 
× B′  

If​ ​the​ ​particle​ ​is​ ​at​ ​rest​ ​in​ ​ S′ : v′ = 0  
EF ′ = q ′  

​ ​is​ ​given​ ​by​ ​(wikipedia)E′  
(v)E ୪ )(E )v  E′ = ୪ − ( − 1 · v  

So  

 F ′ = q ୪(v)E ୪ )(E )v[ − ( − 1 · v ]  

 
Particle​ ​in​ ​a​ ​wire:  



 

 
The​ ​charge​ ​density​ ​in​ ​S​ ​is​ ​ .λ+ − λ−  
So​ ​the​ ​electric​ ​field​ ​created​ ​by​ ​the​ ​charges​ ​is 

(Gauss​ ​theorem)(r) eEs = 2πrε0

λ −λ+ −

r  

The​ ​current​ ​density​ ​in​ ​S​ ​is:​ ​ uzjS = λ−  
So​ ​the​ ​magnitude​ ​in​ ​S​ ​is: 

(Ampere’s​ ​Law)ueBs = 2πr
μ λ0

−

θ  
Therefore​ ​the​ ​force​ ​acting​ ​on​ ​q​ ​is: 

(E )F s = q s + v × Bs  

[λ  eF s = q
2πε r0

+ − λ− − c2
λ uv−

r  

 
In​ ​S’ 
The​ ​charge​ ​and​ ​current​ ​densities​ ​both​ ​change: 

v)(ρ )ρ′ = ( − c2
vj  

v)(j v)j′ = ( − ρ  
v′ = 0  

Thus​ ​ (r) [ ]e  E′S′ = 1

√1−
c2
v2

2πrε0

λ −λ −+ −
c2
vλ u−

r  

[λ ]e⇒ F S′ = q
2πε r0

+ − λ− − c2
λ uv−

r  

A​ ​pure​ ​electric​ ​force​ ​in​ ​ ​ ​is​ ​a​ ​mixed​ ​( , )​ ​force​ ​in​ ​S.​ ​Therefore​ ​One​ ​cannot⇒ S′ E B  
distinguish​ ​ ​ ​from​ ​ .​ ​They​ ​are​ ​two​ ​sides​ ​of​ ​the​ ​same​ ​coin:​ ​the​ ​electromagneticE B  
field. 
2.2.4 

− φE = ∇ − ∂t
∂A  



 

φ ∂ A − (cA ) ∂ (cA )Ex = − ∂x − c
1

t x = ∂x 0 − c
1

t x  
− (cA ) (cA )Ex = ∂1 0 − ∂0 1  

− (cA ) (cA )Ey = Ez = ∂y 0 − ∂0 y  
        E − (cA ) (cA ) z = ∂z 0 − ∂0 z  

− (cA ) (cA )Ez = E3 = ∂3 0 − ∂0 3  
And​ ​generally: 

− (cA ) (cA )Eμ = ∂μ 0 + ∂0 μ  

B = ∇⋀ A⇒  
A − A A ABx = ∂y z ∂z y = ∂2 3 − ∂3 2 = B1  
A − A A ABy = ∂z x ∂x z = ∂3 1 − ∂1 3 = B2  
A A A ABz = ∂x y − ∂y x = ∂1 2 − ∂2 1 = B3  

Setting  
 

A AT μv = ∂μ v − ∂v μ  

We​ ​get: 
… 

​ ​has​ ​16​ ​entries​ ​ =0,1,2,3T μv ,μ v  
T μμ = 0 4​ ​entries 

−T 0μ = T μ0 6​ ​entries 
−T μv = T vμ 6​ ​entreis 

 
 0 1 2 3  

=T μv  

0 c
Ex  c

Ey  c
Ez  0 

− c
Ex  0 Bz  − By  1 

− c
Ey  − Bz  0 Bx  2 

− c
Ez  By  − Bx  0 3 

      
(b) 

⎧ (B )B′⟂ = ୪ ⟂ − c2
v×E  

 



 

⎨B′∥ = B∥  

⎩ 
In​ ​S’​ ​There​ ​is​ ​no​ ​magnetic​ ​field​ ​so: 



On the tidal heating of Io  

 

 

  

Mean Distance from Jupiter 422,000 km (262,219 miles) 

Orbital Period around Jupiter 1.769 Earth days 

        Mean Diameter 3,630 km (2,256 miles) 

        Year Discovered 1610 



What is tidal heating:  (from [10] and[11]) 

Jupiter's moon Io is about the same mass and size as the Earth's Moon. Based on this we would 

expect Io to have about the same inventory of radioactive elements and the same cooling rate as 

the Moon. We would expect Io to have the same level geological activity as the Moon, 

namely none. However, Io is the most geologically active surface in the Solar system. This 

means that the mechanism responsible for heating the interior of Io is very different from that of 

the Moon. 

Using Newton's law of gravitation, we compute the tidal force on a moon of mass m and radius r 

around a planet of mass M and radius R: 

 

The second term in the series expansion gives the tidal force. If the moon is in a 

synchronous orbit around the planet - if its rotational and orbital periods are the same 

- then the differing forces on the near and far side of the moon distort its shape so that 

an initially spherical moon is now longer in the direction facing the planet than in the 

direction of its orbit (Fig. 1).  

 

Figure 1 Deformation of moon due to tidal force. 

This means that when Io orbits Jupiter, the side of Io nearest to Jupiter feels a slightly larger 

gravitational pull than the side of Io furthest from Jupiter. Since Jupiter is very massive (318 

times the mass of the Earth), this difference is rather large. This means that the distorted shape of 

Io keeps the same orientation with respect to Jupiter (this is a slight simplification). If Io was 

Jupiter's only moon this would be the end of the story. Io would be in a nice nearly circular orbit 

about Jupiter with its slightly distorted shape (fig 2). This is what is happening with the Earth's 

Moon. No tidal heating would occur. 
 

  



 

 

Figure 2 Io is synchronous with Jupiter. 

 

However, Io's orbit is in a 2:1 resonance with the orbit of Europa, another moon of Jupiter. Io 

makes two orbit revolution for every one orbit revolution that Europa makes. Europa 

disturbances change the orbit of Io to an elliptic one. (fig 3: shown very exaggerated). 

 
Figure 3 Orbit of Io (red line) 

 

As a result, the tidal forces which depend on the distance from Jupiter vary in time. Io 

is somewhat periodically compressed and stretched by gravitational forces. The 

mechanical energy is not conserved in the process and some heat is generated by 

friction. It is called tidal heating. 

 

 

 
Figure 4 Evolution of Io's shape during its revolution 

       

 

 



Quantitative discussion: 

 

The following discussion is based closely on a simplified analysis by Meyer and 

Wisdom [1]. If the planet's mass is M, and the moon of mass m is in an orbit of 

eccentricity e and semimajor axis a, then the moon's angular momentum and energy 

are 

 

Now letting n = sqrt(GM/a3) and recalling that torque T is the time derivative of the 

angular momentum L, we write dE/dt = (dE/dL)*(dL/dt) ≈ nT, where we have ignored 

corrections of order e2. Now if a small torque results in an angular momentum change 

of ΔL for the system in time Δt, the resulting orbital energy change ΔE will be 

distributed in some way between the two satellites dE/dt = n0T0 + n1T1 = 

(d/dt)[E0+E1]+H, where 0,1 are subscripts referring to the two moons and H is the rate 

of heating, so at least one of the satellites is heated. Near a j:k orbital resonance, we 

have jn1 ≈ kn0 and so (1/n0)(dn0/dt) ≈ (1/n1)(dn1/dt). Now assuming that T0>> T1 and 

n0T0 >> n1T1 and using these conditions at equilibrium we find 

 

The torque on each satellite is given by [2] 

 

where k2P and QP are the potential Love number and Q of the planet. In equilibrium 

eccentricity e, the heating rate is then equal to [2] 

 

We see that the heating rate is proportional to the square of the moon's eccentricity. 

Using the above two expressions we can solve for e and find that e2 is proportional to 

(Q0/k20)*(kP0/QP0). Meyer and Wisdom summarize some methods for estimating these 

parameters for a moon around a planet. 

 



The problem with Io 

 

Io’s heat flux at its surface is about 2. Wm
-2

. Surface heat flux models must reproduce the 

volcanos distribution at Io’s surface. This distribution is longitude dependant [8] . It must also 

takes into account Io’s magnetic field [6] [9] that is only compatible with magma, and at last 

with Io’s electric current [7]. 

There is an agreement in the research community that the heat is produced by friction during the 

tidal expansion and compression. The different models [3],[4],[5] all differ by their assumption 

on the internal structure of  Io that affect the mean dissipation parameter Q. It varies between a 

uniform clay-like interior, to a shell structure one, each shell having a different viscosity. The 

latest model [5] assumes a partially melt asthenosphere.  

 

 

  

Figure 5 Results of W.B Moore [3]. Numerical results for solid only Io’s interiror  are one order of 
magnitude below observations. 



 

 

Figure 6   From [5] : latest model. Mixed-solid liquid Io's interior explain surface heat flux generated by tidal forces and 
volcanos distribution at  the surface. 



Jupiter-Io-Europa 

(Image 1) 

Io‘s inclination above Jupiter’s equator = 0.05  Europa’s inclination = 0.47  

Hypothesis 

In our model we neglect the inclinations and consider Jupiter-Io-Europa to be coplanar 

Coordinate systems- Frame of reference 

We use a Jovio-centric fixed reference frame (I.e. Copernic-Like) 

To describe Io and Europa’s position we use a polar coordinate system 

To describe a point attached to Io or Europa, we use a spherical coordinate system. The 

local frame of reference is in Elliptic translation around Jupiter (axis remain parallel) 

Two body problem: 

(image 2) 
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Applying Newton’s second law to Io we find: 
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Applying newtons second law to a point M in/on Io, We get: 
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            Non inertial terms 

(image 3) 

         is the local gravitational field. 

Assuming the tidal bulge to be slow enough to neglect         ; we find that Io’s equilibrium 

equation is: 
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-        is the solid balancing force that counteracts gravitational collapse. 

- The second term is the local weight force. 

- The third term is the tidal force. 

- The final term is the centrifugal term. 

We can expand in power series the tidal field:      
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We recognize the polarization field. Jupiter’s gravitational dipolar moment is:  

           (6) 

We can introduce the potential 
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The planet’s interior is assimilated to an incompressible fluid 

           

  

  
       

 

                
  

    

  

  
           

  

 

          
  

  
 is the rate at which the surface moves 

A common hypothesis is that 
  

  
 

  

   
    where     being an adhoc retarded potential to 

model a non instantaneous response of the planet to Jupiter 

   is the Love number for Io. It is an adhoc parameter that states the variation of height 

is proportional to the variation of potential. 
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After many calculations: 
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   Energy dissipation factor 

Formula 11 is quite difficult to derive since it depends on two adhoc coefficients h2 ; Q. 

We can try to evaluate 
  

  
 by other means, free to use our own arbitrary coefficients. We 



are going to calculate the tidal deformation of Io. From there we will be able to calculate 

both it’s potential energy and rotational energy from which we will get      and 
  

  
.  

Tidal height 

Equation (4) is reminiscent of the hydrostatic equation:            

So we set               (12) to get: 
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(13) must be supplemented by an equation for the conservation of the volume 

(incomprehensibility).     
 

 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



On the tidal heating of Io  

 

 

  

Mean Distance from Jupiter 422,000 km (262,219 miles) 

Orbital Period around Jupiter 1.769 Earth days 

        Mean Diameter 3,630 km (2,256 miles) 

        Year Discovered 1610 



What is tidal heating:  (from [10] and[11]) 

Jupiter's moon Io is about the same mass and size as the Earth's Moon. Based on this we would 

expect Io to have about the same inventory of radioactive elements and the same cooling rate as 

the Moon. We would expect Io to have the same level geological activity as the Moon, 

namely none. However, Io is the most geologically active surface in the Solar system. This 

means that the mechanism responsible for heating the interior of Io is very different from that of 

the Moon. 

Using Newton's law of gravitation, we compute the tidal force on a moon of mass m and radius r 

around a planet of mass M and radius R: 

 

The second term in the series expansion gives the tidal force. If the moon is in a 

synchronous orbit around the planet - if its rotational and orbital periods are the same 

- then the differing forces on the near and far side of the moon distort its shape so that 

an initially spherical moon is now longer in the direction facing the planet than in the 

direction of its orbit (Fig. 1).  

 

Figure 1 Deformation of moon due to tidal force. 

This means that when Io orbits Jupiter, the side of Io nearest to Jupiter feels a slightly larger 

gravitational pull than the side of Io furthest from Jupiter. Since Jupiter is very massive (318 

times the mass of the Earth), this difference is rather large. This means that the distorted shape of 

Io keeps the same orientation with respect to Jupiter (this is a slight simplification). If Io was 

Jupiter's only moon this would be the end of the story. Io would be in a nice nearly circular orbit 

about Jupiter with its slightly distorted shape (fig 2). This is what is happening with the Earth's 

Moon. No tidal heating would occur. 
 

  



 

 

Figure 2 Io is synchronous with Jupiter. 

 

However, Io's orbit is in a 2:1 resonance with the orbit of Europa, another moon of Jupiter. Io 

makes two orbit revolution for every one orbit revolution that Europa makes. Europa 

disturbances change the orbit of Io to an elliptic one. (fig 3: shown very exaggerated). 

 
Figure 3 Orbit of Io (red line) 

 

As a result, the tidal forces which depend on the distance from Jupiter vary in time. Io 

is somewhat periodically compressed and stretched by gravitational forces. The 

mechanical energy is not conserved in the process and some heat is generated by 

friction. It is called tidal heating. 

 

 

 
Figure 4 Evolution of Io's shape during its revolution 

       

 

 



Quantitative discussion: 

 

The following discussion is based closely on a simplified analysis by Meyer and 

Wisdom [1]. If the planet's mass is M, and the moon of mass m is in an orbit of 

eccentricity e and semimajor axis a, then the moon's angular momentum and energy 

are 

 

Now letting n = sqrt(GM/a3) and recalling that torque T is the time derivative of the 

angular momentum L, we write dE/dt = (dE/dL)*(dL/dt) ≈ nT, where we have ignored 

corrections of order e2. Now if a small torque results in an angular momentum change 

of ΔL for the system in time Δt, the resulting orbital energy change ΔE will be 

distributed in some way between the two satellites dE/dt = n0T0 + n1T1 = 

(d/dt)[E0+E1]+H, where 0,1 are subscripts referring to the two moons and H is the rate 

of heating, so at least one of the satellites is heated. Near a j:k orbital resonance, we 

have jn1 ≈ kn0 and so (1/n0)(dn0/dt) ≈ (1/n1)(dn1/dt). Now assuming that T0>> T1 and 

n0T0 >> n1T1 and using these conditions at equilibrium we find 

 

The torque on each satellite is given by [2] 

 

where k2P and QP are the potential Love number and Q of the planet. In equilibrium 

eccentricity e, the heating rate is then equal to [2] 

 

We see that the heating rate is proportional to the square of the moon's eccentricity. 

Using the above two expressions we can solve for e and find that e2 is proportional to 

(Q0/k20)*(kP0/QP0). Meyer and Wisdom summarize some methods for estimating these 

parameters for a moon around a planet. 

 



The problem with Io 

 

Io’s heat flux at its surface is about 2. Wm
-2

. Surface heat flux models must reproduce the 

volcanos distribution at Io’s surface. This distribution is longitude dependant [8] . It must also 

takes into account Io’s magnetic field [6] [9] that is only compatible with magma, and at last 

with Io’s electric current [7]. 

There is an agreement in the research community that the heat is produced by friction during the 

tidal expansion and compression. The different models [3],[4],[5] all differ by their assumption 

on the internal structure of  Io that affect the mean dissipation parameter Q. It varies between a 

uniform clay-like interior, to a shell structure one, each shell having a different viscosity. The 

latest model [5] assumes a partially melt asthenosphere.  

 

 

  

Figure 5 Results of W.B Moore [3]. Numerical results for solid only Io’s interiror  are one order of 
magnitude below observations. 
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         is the local gravitational field. 
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-        is the solid balancing force that counteracts gravitational collapse. 

- The second term is the local weight force. 

- The third term is the tidal force. 

- The final term is the centrifugal term. 

We can expand in power series the tidal field:      
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We recognize the polarization field. Jupiter’s gravitational dipolar moment is:  
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