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The Barn Problem:
As seen by the runner:

: : P P
The barn moves at -c: => its Length is contracts to Z— =%.

As a result, the pole does not fit into the barn.

It follows that the paradox lies in the simultaneity of both ends of the pole being
contained by the barn.

Simultaneity is not a relativistic invariant.

A devil’s advocate alternative device would be:
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If the farmer closes the door at t=¢ = % does the pole fit or not?

Rigid body may not be a relativistic reality. Stopping one end of the pole with a
wall cannot instantaneously transmit the information to the other end. This
example is comparable to a falling slinky that levitates (youtube video)
Invariance of spacetime:

ds”® =— Adi* + dx” + dy” + dz"”

And:

{cdt' = Scdt — yPBdx}

{dz' = SBcdt + 8dx}

{dy'=dy}

{dz' = dz}

Substitution gives us

ds” = §*(cdt — Bdx)* + 8*(— Bedt + dx)* + dy* + dz*

= 1—132 [ (— Bedt + dx)*— (cdt — de)z] L+ d

= v —2Bedvdi + B*Pde’ —Pdr’ +2Bedxdt—BPdx | + dy? + dz?

- 1*1[32 [(1- B — (1 - Bz)czdfz] +dy? + dz?
=— c2df* + dx* + dy? + dz°
ds? = ds?

The spacetime interval is an invariant




Time dilation:

Consider a clock C’ at rest in S’ located at x’

Attt :

t =8t + 5x

Some time later C’ time is t’,. A different clock C, in S passes by x’, in S’ and
gives

t, =8(t) + 5x’

= At =t,—t,=08(,—1))

At = SAY

At > At = it follows that there has been time dilatation.

Real world example:

Acceleration: Radioactive particles are accelerated to near C speed. In the Lab
Frame they do not decay as fast as in the (----) frame => One can study them.
G.P.S atomic clocks time vary by 1us/day when compared with ground based
clocks.

Length contraction:

InS’: 1,=%x",-x", att

In S: x’, = §(x;-vt) att

X", =8 (X, -vt)

From which A/’ = §Al

= Al'= %l , and as a result, we observe the contraction of length.

Axor At are not conserved but As = c2A#> — Ax? is conserved. For instance, one
might imagine a classical example: a rocket carrying Martha travels to planet Z at
speed 0.8 c for 30 years (as observed by Bob on earth).

The distance as seen by Bob 1s d=0.8*30=24 light years. Martha measures
Aty = 8At,,, =30%0.6=18 years and the distance is d,,,,=.80*18=14.4
Light/years.

martha



Relativity and rotation

cdt’ g — 8B 0 0 cdt
dx’ — 5P s 0 0 dx
dy’ - 0 0 1 0 ' dy
dz’ 0 0 0 1 dz

One can write
a) 8= cosh(p)
b) 8B = sinh(op)
Since ¥*(1 —B%) = 1, one can write (¥)> — (3B)* = 1.
Next, this can be expressed as coshz((p) - sinhz((p) = 1. This gives us a consistent
statement.
Then, by dividing b) by a) we find
tanh(g) = B € ¢ = tanh” (B)
The lorentz transformation can then be rewritten as a hyperbolic rotation around an
axis perpendicular to (ot) and (0x)

cosh() — sinh(o) 0 0

— sinh(o) cosh() 0 0

b= 0 0 1 0
0 0 0 1

Four velocity:

a) x4 = (ct,x(1),y(1),z(¢) in S. Two close events on the worldline are
xandx+dx=c(t+dt), x+dx, y+dy, z+dz
The proper time between these events is

_(FdP-dlP-dy*-dH)'? u2\1/2
dt = - =di(l - %)

_ o dx. W, dz
Where u = i dt)

We thus obtain: j—Tt = j—; = 8(u)




The velocity used to be (---) in the Lorentz transformation is u;
b) The Lorentz transformation reads:
x =8(x'+vt) = dx = 8(dx' + vdt)
t=3(t+ ) = = B(dr + &)
dx!

— dx — a Y = 5 = vt

y = &
dt s 150
C C

By reversing v one finds

Invariance of the energy momentum:

P 4= (%,F) 1s a four-vector, so it’s length is conserved.

P~ & = (o) (1)

But
E = 8mc?
P =8mv

So in the proper frame S’:

- 2

Py=("s 0)

And the invariant reads — m?c? = p’2 — f—j (2)

Combining 1 and 2 leads us to:

B2 = 2 + m2c

Four-acceleration:

v v =" (invariant)

dy-v)=0e 29X =0e7v-a=0

Continuity equation:

Let Q be the charge contained by a fixed volume Q

0=[pdn
Q



aa_g = Gain — Loss = — _[ ]- ~ds <« flux of charge through 0Q2
0Q
Since Q i1s fixed:

jpdg jap dQ

By using the divergence theorem: _[ jds= IV ]dQ
oQ

gfz(%+$-])dg=0=>%+$-}=0

0 ~ - o(c - - .
§T -0 E T 0w zos -0

0y =0

The four dimensional divergence of ]_'“ is null.
_ 1 0 il
ali o m + ox + + Oz
Maxwell’s equations in terms of the potential:
=£(1) V-B=0(3)

§_13= L@ VAB=pj+i%E @
V-B=0=

B=V A4 (5)

= VAE=0YM ="V p(- X
:$[E+5A]:0=>
E=—U-V¢(6)

VAB= V/\(V/\A) v(? A) V24
=/ + czaz[ Vo- ]

= L -V = - V[V-4+L 2] )



A is defined as modulo gf where f represents any function.
B=VAA+V)=VAA

¢ is defined as modulo Z—J:

T 8(A+Vj) ( ) _ V(p

To remove the degree of freedom we set

V-A+ 5 aa(f = 0 (Lorentz gauge)

We then find:
jzaaA Vod=yj ®

oA =y (8)

Equation (1) becomes
S5, _4d]_~°
V[-Ve-%]=2

~Vi-5(V-A)=2
And by using the gauge equation:

1% _Ve=2
& of €y
2
0o
C SOC
2

Invariance of the d’alembertian:
o’ =L -vi=25,0"

C2

The d’ alembertlan is a dot product, So it 1s invariant
Proof: A4B4 AyB" =—ayb, + (alb + azb + a3b3)
With 4 =

[a,a),a;,a;]

B =

[by,b,,b,,D05]



Transforming the coordinates from S — §’

a'y =8(ay — Pay) a'y =3(a; —Bay)

110 =_5(bo —Bby) by =8(by —Bby)

A+ B = B(ay — Bay)S(by — Bby) + S(a; — Bag)(by — Bby) + b, + asb
== 8((1 = B*)@, by — aghy) + a b, + asbs

=—ayb, +a,b, +a,b, + a;b,

O° is an operator. It does not have any length. Consequently, it is inaccurate to

refer to a Lorentz invariant.
0® = 0” means that Maxwell’s equations are invariant (in the way they are written)

2 2 2 2
o° =g” © o°4" =o“4*
= A" is a one component tensor that is Lorentz invariant => It is a four vector

47e

i) 0F) = 7 [ FRd
Q

7

InSatt:dv'g = dx'dy'dz' [r—7|s = \/(x —x')2 + (@ —y')2 +(z —Z')2
In S att: dv'g, = 8dx'dy'dz’ [r—7|g = \/52(x - x')2 +(y —y')2 +(z— z')2

dv'y dvg
Y
D)
(1)
209y ¢ 2 p
0°(3) p =0 o/c m

i (7

0°4 = W/



= 24" = ju
It is a compact form of (1)
Maxwell equations are not only potential equations

0°A = poj

2 _ P
o= 8—0
They must be supplemented with the Gauge equation.
.4 L9 _
VoAd+55=0

09 _

V : A + a_ctz - O
0,4" =0

Now taking the four divergence of 024" = s
0,07 A" = 0%0,4" = 0 = 9,
So the notation is coherent, and we can write maxwell’s equations are equivalent

to:
024" =ju

Forces in different frames:

InS: F = qZ_?

InS: F'= q(l_*?’ +v' X E’) Because physical laws are invariants
If the particle is at restin S': V' =0

f '= ql_?'

E' is given by (wikipedia)

E'=8WE - - 1)E V)W

So

F'=q[SWE- - 1)E v7]

Particle in a wire:




The charge density in Sis A" — A~ .
So the electrlc field created by the charges is

Es(r = én Q e, (Gauss theorem)

The current density in S is: ] g=Auz
So the magnitude in S is:

B = 207:; uey (Ampere’s Law)
Therefore the force acting on q is:
= (B, +7V Bs)
T Aruw S
F Znao [}\‘ - c?
InS’
The charge and current densities both change:
=P~ 3
J' =00 - PV)
v’ =0
_r }J_);_%;-u 3
Thus E'q(r) = 2[ Srre, le.
=5
=>F 27:8r[}L A - ]e”

= A pure electric force in S’ is a mixed (E B) force in S. Therefore One cannot

distinguish E from B. They are two sides of the same coin: the electromagnetic
field.
224



Ex = 8)C(P - létAx = ax(CAO) - %at(CAx)

E. = 0.(cAy) — dg(cAs)
And generally:

E\ == 0yu(cdy) + 0y(cAy)

§=$/\Z=>

Setting
Ty, =0,4,— 0,4,
We get:
T\, has 16 entries p,v=0,1,2,3
Twyw=0 4 entries
TOH =T 40 6 entries
Ty =T, 6 entreis
0 1 2 3
0 E 2 =
E, _
. - 0 Bz By
w =
_ E_ ~B, 0 B,
- L B, - B, 0
(b)




i By =By

l

In S’ There is no magnetic field so:



On the tidal heating of lo

Mean Distance from Jupiter 422,000 km (262,219 miles)
Orbital Period around Jupiter 1.769 Earth days
Mean Diameter 3,630 km (2,256 miles)

Year Discovered 1610



What is tidal heating: (from [10] and[11])

Jupiter's moon lo is about the same mass and size as the Earth's Moon. Based on this we would
expect lo to have about the same inventory of radioactive elements and the same cooling rate as
the Moon. We would expect lo to have the same level geological activity as the Moon,
namely none. However, lo is the most geologically active surface in the Solar system. This
means that the mechanism responsible for heating the interior of 1o is very different from that of
the Moon.

Using Newton's law of gravitation, we compute the tidal force on a moon of mass m and radius r
around a planet of mass M and radius R:

_ . Mm - Mm - 2Mmr
Fe=-thy— = —Gy—— + yg—
NRE) NRT TUNTRS T

The second term in the series expansion gives the tidal force. If the moon is in a
synchronous orbit around the planet - if its rotational and orbital periods are the same
- then the differing forces on the near and far side of the moon distort its shape so that
an initially spherical moon is now longer in the direction facing the planet than in the
direction of its orbit (Fig. 1).

This means that when lo orbits Jupiter, the side of lo nearest to Jupiter feels a slightly larger
gravitational pull than the side of lo furthest from Jupiter. Since Jupiter is very massive (318
times the mass of the Earth), this difference is rather large. This means that the distorted shape of
lo keeps the same orientation with respect to Jupiter (this is a slight simplification). If 1o was
Jupiter's only moon this would be the end of the story. 1o would be in a nice nearly circular orbit
about Jupiter with its slightly distorted shape (fig 2). This is what is happening with the Earth's
Moon. No tidal heating would occur.



Figure 2 lo is synchronous with Jupiter.

However, lo's orbit is in a 2:1 resonance with the orbit of Europa, another moon of Jupiter. lo
makes two orbit revolution for every one orbit revolution that Europa makes. Europa
disturbances change the orbit of lo to an elliptic one. (fig 3: shown very exaggerated).
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Figure 3 Orbit of lo (red line)

2.1

As a result, the tidal forces which depend on the distance from Jupiter vary in time. lo
Is somewhat periodically compressed and stretched by gravitational forces. The

mechanical energy is not conserved in the process and some heat is generated by
friction. It is called tidal heating.

Figure 4 Evolution of lo's shape during its revolution



Quantitative discussion:

The following discussion is based closely on a simplified analysis by Meyer and
Wisdom [1]. If the planet's mass is M, and the moon of mass m is in an orbit of
eccentricity e and semimajor axis a, then the moon's angular momentum and energy
are

L =my/GyMa(l —€?), E=—-GyMm/(2a)

Now letting n = sqrt(GM/a®) and recalling that torque T is the time derivative of the
angular momentum L, we write dE/dt = (dE/dL)*(dL/dt) = nT, where we have ignored
corrections of order e2. Now if a small torque results in an angular momentum change
of AL for the system in time At, the resulting orbital energy change AE will be
distributed in some way between the two satellites dE/dt = ngTo + N, T, =
(d/dt)[Eq+E]+H, where 0,1 are subscripts referring to the two moons and H is the rate
of heating, so at least one of the satellites is heated. Near a j:k orbital resonance, we
have jn; = kng and so (1/ng)(dng/dt) = (1/ny)(dn,/dt). Now assuming that To>> T, and
NoTo >> N, T, and using these conditions at equilibrium we find

1+ myan/ (moeay )
H=mnpTo | 1- : ; . T
1+ (i frng ) W at/an

The torque on each satellite is given by [2]

T E f-;NIrEQRI‘E. kap
2 a®Qp

where kyp and Qp are the potential Love number and Q of the planet. In equilibrium
eccentricity e, the heating rate is then equal to [2]

2 Ch a”

We see that the heating rate is proportional to the square of the moon's eccentricity.
Using the above two expressions we can solve for e and find that e? is proportional to
(Qu’k20)*(kpo/Qpo). Meyer and Wisdom summarize some methods for estimating these
parameters for a moon around a planet.
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Figure 4. a) Two different rheologies (thick versus thin lines) bounding the behavior of molten rocks
leading to the different tidal heating and convective heat flux curves in b). Equilibrium states exist where
the tidal heating and convective heat flux are equal. Despite the different rheologies and different
equilibrium temperatures, the equilibrium heat fluxes are both about an order of magnitude below lo's
observed heat flux (gray band).

Figure 5 Results of W.B Moore [3]. Numerical results for solid only lo’s interiror are one order of
magnitude below observations.

The problem with lo

Io’s heat flux at its surface is about 2. Wm™. Surface heat flux models must reproduce the
volcanos distribution at Io’s surface. This distribution is longitude dependant [8] . It must also
takes into account Io’s magnetic field [6] [9] that is only compatible with magma, and at last
with Io’s electric current [7].

There is an agreement in the research community that the heat is produced by friction during the
tidal expansion and compression. The different models [3],[4],[5] all differ by their assumption
on the internal structure of lo that affect the mean dissipation parameter Q. It varies between a
uniform clay-like interior, to a shell structure one, each shell having a different viscosity. The
latest model [5] assumes a partially melt asthenosphere.



Volcanoes at high latitudes may be fed
primarily by magma generated
in the deep mantle by solid body tides

Volcanoes at low
latitudes may be fed
primarily by magma
generated in the
asthenosphere by
fluid body tides

Figure 5. Sketch of a model for lo with simultaneous fluid and solid tidal heating occurring in separate layers, whereby both equatorial and polar velcanic sources
receive adequate tidal heat input. In this model, fluid tidal heating originates from a thin magma ocean, asthenosphere, or magma-slush partial melt layer, and provides
tidal heat flux primarily into equatorial volcanoes in a pattern that is not symmetric about the sub-Jovian point, but instead offset in longitude by approximately 307,
Simultaneous solid-body tidal heating occurs in this model below this high melt fraction top layer, and consistently with mantle-dominated solid-body tidal models,
produces a significant polar contribution of tidal heat flux. If significant magma mixing did not occur, this model would predict that polar volcanoes may have
observational evidence for being sourced from high depths (e.g., higher emption temperatures), with equatorial volcanoes sourced from shallow depths. Black and
white arrows represent heating from the deep mantle and asthenosphere, respectively, and are scaled to schematically represent the latitudinal variation in heat flux.

Figure 6 From [5] : latest model. Mixed-solid liquid lo's interior explain surface heat flux generated by tidal forces and
volcanos distribution at the surface.



Jupiter-To-Europa

(Image 1)

Io's inclination above Jupiter's equator = 0.05° Europd's inclination = 0.47°

Hypothesis

In our model we neglect the inclinations and consider Jupiter-Io-Europa to be coplanar

Coordinate systems- Frame of reference

We use a Jovio-centric fixed reference frame (I.e. Copernic-Like)
To describe To and Europa’s position we use a polar coordinate system

To describe a point attached to To or Europa, we use a spherical coordinate system. The
local frame of reference is in Elliptic translation around Jupiter (axis remain parallel)

Two body problem:

(image 2)

OM(t) = R(t) + #()

Ve (M) —R+7=R+rwsinb €y
ar(M) = R — rw?sin0 é (1)

Applying Newton's second law to Io we find:

2 Gm,oMj N
mphk = — R3

Applying newtons second law to a point M in/on Io, We get:
Mé;, () = Fyoay — MGro () — % (R+7)+ m%ﬁ + Mr?w?sin 0 U, (3)
R+7r

\ /

Non inertial terms
(image 3)
Jio(#) is the local gravitational field.

Assuming the tidal bulge to be slow enough to neglect d;,(7); we find that To's equilibrium
equation is:



> N R R+7 . N =
Fpoay — mgio () + GM;m (F - |(§+7:|)3> + mriw?sinf i, =0 (4)

- Fpoay is the solid balancing force that counteracts gravitational collapse.
- The second term is the local weight force.

- The third term is the tidal force.

- The final term is the centrifugal term.

We can expand in power series the tidal field: g
g - _3 - g
IR+7 = =|R?+2rF R+r|

2t-R  r?|
R TR

8@ = MR- (R +7) (1 _ 3ﬂ>)

g® = 2GR -1 (5)

We recognize the polarization field. Jupiter's gravitational dipolar moment is:
P; = GM,7# (6)

We can introduce the potential

9' (@ = Vol (7)

g*(#) being linear in 7, ¢f is quadratic.

After expanding Vi () = | | - t+0 the second order we find:

ot _ &M 2
- [3( —r ] 8)
. cos f rsin @ cos(¢ + wt)
R=R<sinf> 77=(rsin95in(p+wt>
0 Rcos@

5 =

= ;—_i_Rr = sin(0) [cos(¢p + wt) cos(f) + sin(f) sin(¢p + wt)]

sin(8) cos(p — f + wt)




GM,
- {(pg R ——L[35in?(6) cos?(p — f + wt) — 1]

R = a = semimajor axis of Io

Rate of dissipation of Energy

Following Wisdom (Tidal dissipation at arbitrary eccentricity and obliquity: Icarus 193
(2008) 637-540)

dE 5 .
_t = f fbody - vdQ)
Q

f;ody = _VUt U : Total po’ren’rial

dE = N
> = = —VU;3d

The planet's interior is assimilated to an incompressible fluid

_)

<ll

=

dE
—= (Ctﬁ)d:—j pr-v-ds
dt 0 20

j U - v,ds
G

—

, dh . :
Up =Vl =_lis the rate at which the surface moves

A common hypothesis is that Z—}; = ;—ZﬁT where ii; being an adhoc retarded potential to
Io

model a non instantaneous response of the planet to Jupiter

h, is the Love number for Io. It is an adhoc parameter that states the variation of height
is propor“rional to the variation of potential.

L 2 [ Ur g < (Tp)ds (10)

After many calculations:

dE _ 21 k2 Gr?
& rEEew

Q = Energy dissipation factor

Formula 11 is quite difficult to derive since it depends on two adhoc coefficients h, ; Q.
We can try to evaluate % by other means, free to use our own arbitrary coefficients. We




are going to calculate the tidal deformation of Io. From there we will be able to calculate
both it's potential energy and rotational energy from which we will get E(t) and %.

Tidal height

Equation (4) is reminiscent of the hydrostatic equation: —Vp = pg
So we set ﬁbody = —Vp (12) to get:

~P + pp, + pbio — p%(vz sin?(9) = c*¢ (13)

(13) must be supplemented by an equation for the conservation of the volume
(incomprehensibility). [ dQ = §m”3



On the tidal heating of lo

Mean Distance from Jupiter 422,000 km (262,219 miles)
Orbital Period around Jupiter 1.769 Earth days
Mean Diameter 3,630 km (2,256 miles)

Year Discovered 1610



What is tidal heating: (from [10] and[11])

Jupiter's moon lo is about the same mass and size as the Earth's Moon. Based on this we would
expect lo to have about the same inventory of radioactive elements and the same cooling rate as
the Moon. We would expect lo to have the same level geological activity as the Moon,
namely none. However, lo is the most geologically active surface in the Solar system. This
means that the mechanism responsible for heating the interior of 1o is very different from that of
the Moon.

Using Newton's law of gravitation, we compute the tidal force on a moon of mass m and radius r
around a planet of mass M and radius R:

_ . Mm - Mm - 2Mmr
Fe=-thy— = —Gy—— + yg—
NRE) NRT TUNTRS T

The second term in the series expansion gives the tidal force. If the moon is in a
synchronous orbit around the planet - if its rotational and orbital periods are the same
- then the differing forces on the near and far side of the moon distort its shape so that
an initially spherical moon is now longer in the direction facing the planet than in the
direction of its orbit (Fig. 1).

This means that when lo orbits Jupiter, the side of lo nearest to Jupiter feels a slightly larger
gravitational pull than the side of lo furthest from Jupiter. Since Jupiter is very massive (318
times the mass of the Earth), this difference is rather large. This means that the distorted shape of
lo keeps the same orientation with respect to Jupiter (this is a slight simplification). If 1o was
Jupiter's only moon this would be the end of the story. 1o would be in a nice nearly circular orbit
about Jupiter with its slightly distorted shape (fig 2). This is what is happening with the Earth's
Moon. No tidal heating would occur.



Figure 2 lo is synchronous with Jupiter.

However, lo's orbit is in a 2:1 resonance with the orbit of Europa, another moon of Jupiter. lo
makes two orbit revolution for every one orbit revolution that Europa makes. Europa
disturbances change the orbit of lo to an elliptic one. (fig 3: shown very exaggerated).

L~
Mo

Figure 3 Orbit of lo (red line)
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As a result, the tidal forces which depend on the distance from Jupiter vary in time. lo
Is somewhat periodically compressed and stretched by gravitational forces. The

mechanical energy is not conserved in the process and some heat is generated by
friction. It is called tidal heating.

Figure 4 Evolution of lo's shape during its revolution



Quantitative discussion:

The following discussion is based closely on a simplified analysis by Meyer and
Wisdom [1]. If the planet's mass is M, and the moon of mass m is in an orbit of
eccentricity e and semimajor axis a, then the moon's angular momentum and energy
are

L =my/GyMa(l —€?), E=—-GyMm/(2a)

Now letting n = sqrt(GM/a®) and recalling that torque T is the time derivative of the
angular momentum L, we write dE/dt = (dE/dL)*(dL/dt) = nT, where we have ignored
corrections of order e2. Now if a small torque results in an angular momentum change
of AL for the system in time At, the resulting orbital energy change AE will be
distributed in some way between the two satellites dE/dt = ngTo + N, T, =
(d/dt)[Eq+E]+H, where 0,1 are subscripts referring to the two moons and H is the rate
of heating, so at least one of the satellites is heated. Near a j:k orbital resonance, we
have jn; = kng and so (1/ng)(dng/dt) = (1/ny)(dn,/dt). Now assuming that To>> T, and
NoTo >> N, T, and using these conditions at equilibrium we find

1+ myan/ (moeay )
H=mnpTo | 1- : ; . T
1+ (i frng ) W at/an

The torque on each satellite is given by [2]

T E f-;NIrEQRI‘E. kap
2 a®Qp

where kyp and Qp are the potential Love number and Q of the planet. In equilibrium
eccentricity e, the heating rate is then equal to [2]

2 Ch a”

We see that the heating rate is proportional to the square of the moon's eccentricity.
Using the above two expressions we can solve for e and find that e? is proportional to
(Qu’k20)*(kpo/Qpo). Meyer and Wisdom summarize some methods for estimating these
parameters for a moon around a planet.
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Figure 4. a) Two different rheologies (thick versus thin lines) bounding the behavior of molten rocks
leading to the different tidal heating and convective heat flux curves in b). Equilibrium states exist where
the tidal heating and convective heat flux are equal. Despite the different rheologies and different
equilibrium temperatures, the equilibrium heat fluxes are both about an order of magnitude below lo's
observed heat flux (gray band).

Figure 5 Results of W.B Moore [3]. Numerical results for solid only lo’s interiror are one order of
magnitude below observations.

The problem with lo

Io’s heat flux at its surface is about 2. Wm™. Surface heat flux models must reproduce the
volcanos distribution at Io’s surface. This distribution is longitude dependant [8] . It must also
takes into account Io’s magnetic field [6] [9] that is only compatible with magma, and at last
with Io’s electric current [7].

There is an agreement in the research community that the heat is produced by friction during the
tidal expansion and compression. The different models [3],[4],[5] all differ by their assumption
on the internal structure of lo that affect the mean dissipation parameter Q. It varies between a
uniform clay-like interior, to a shell structure one, each shell having a different viscosity. The
latest model [5] assumes a partially melt asthenosphere.



Volcanoes at high latitudes may be fed
primarily by magma generated
in the deep mantle by solid body tides

Volcanoes at low
latitudes may be fed
primarily by magma
generated in the
asthenosphere by
fluid body tides

Figure 5. Sketch of a model for lo with simultaneous fluid and solid tidal heating occurring in separate layers, whereby both equatorial and polar velcanic sources
receive adequate tidal heat input. In this model, fluid tidal heating originates from a thin magma ocean, asthenosphere, or magma-slush partial melt layer, and provides
tidal heat flux primarily into equatorial volcanoes in a pattern that is not symmetric about the sub-Jovian point, but instead offset in longitude by approximately 307,
Simultaneous solid-body tidal heating occurs in this model below this high melt fraction top layer, and consistently with mantle-dominated solid-body tidal models,
produces a significant polar contribution of tidal heat flux. If significant magma mixing did not occur, this model would predict that polar volcanoes may have
observational evidence for being sourced from high depths (e.g., higher emption temperatures), with equatorial volcanoes sourced from shallow depths. Black and
white arrows represent heating from the deep mantle and asthenosphere, respectively, and are scaled to schematically represent the latitudinal variation in heat flux.

Figure 6 From [5] : latest model. Mixed-solid liquid lo's interior explain surface heat flux generated by tidal forces and
volcanos distribution at the surface.



Jupiter-To-Europa

Io's inclination above Jupiter's equator = 0.05° Europd's inclination = 0.47°
Hypothesis
In our model we neglect the inclinations and consider Jupiter-Io-Europa to be coplanar

Coordinate systems- Frame of reference

We use a Jovio-centric fixed reference frame (I.e. Copernic-Like)
To describe To and Europa’s position we use a polar coordinate system

To describe a point attached to Io or Europa, we use a spherical coordinate system. The
local frame of reference is in Elliptic translation around Jupiter (axis remain parallel)

Two body problem:

(image 2)

OM(t) = ﬁ(t) +#(t)

VR(M)= P ﬁ+rwsm9 €y
dr(M) =R —rw?sind &, (1)

Applying Newton's second law to Io we find:

- Gmlo j =
mp,R = — 73
= GM
R=-2U1R(2)

Applying newtons second law to a point M in/on To, We get:

md,(7) = ﬁbody mgio(7) — |mGM (R+7)+ m—’R + Mr?w?sin 0 U, (3)

\ /

Non inertial terms
(image 3)
Jio(™) is the local gravitational field.

Assuming the tidal bulge o be slow enough to neglect d;,(#); we find that Io's equilibrium
equation is:



> N R R+7 . N =
Fpoay — mgio () + GM;m (F - |(§+7:|)3> + mriw?sinf i, =0 (4)

- Fpoay is the solid balancing force that counteracts gravitational collapse.
- The second term is the local weight force.

- The third term is the tidal force.

- The final term is the centrifugal term.

We can expand in power series the tidal field: g
g - _3 - g
IR+7 = =|R?+2rF R+r|

2t-R  r?|
R TR

8@ = MR- (R +7) (1 _ 3ﬂ>)

g® = 2GR -1 (5)

We recognize the polarization field. Jupiter's gravitational dipolar moment is:
P; = GM,7# (6)

We can introduce the potential

9' (@ = Vol (7)

g*(#) being linear in 7, ¢f is quadratic.

After expanding Vi () = | | - t+0 the second order we find:

ot _ &M 2
- [3( —r ] 8)
. cos f rsin @ cos(¢ + wt)
R=R<sinf> 77=(rsin95in(p+wt>
0 Rcos@

5 =

= ;—_i_Rr = sin(0) [cos(¢p + wt) cos(f) + sin(f) sin(¢p + wt)]

sin(8) cos(p — f + wt)




GM,
- {(pg R ——L[35in?(6) cos?(p — f + wt) — 1]

R = a = semimajor axis of Io

Rate of dissipation of Energy

Following Wisdom (Tidal dissipation at arbitrary eccentricity and obliquity: Icarus 193
(2008) 637-540)

dE 5 .
_t = f fbody - vdQ)
Q

f;ody = _VUt U : Total po’ren’rial

dE = N
> = = —VU;3d

The planet's interior is assimilated to an incompressible fluid

_)

<ll

=

dE
—= (Ctﬁ)d:—j pr-v-ds
dt 0 20

j U - v,ds
G

—

, dh . :
Up =Vl =_lis the rate at which the surface moves

A common hypothesis is that Z—}; = ;—ZﬁT where ii; being an adhoc retarded potential to
Io

model a non instantaneous response of the planet to Jupiter

h, is the Love number for Io. It is an adhoc parameter that states the variation of height
is propor“rional to the variation of potential.

L 2 [ Ur g < (Tp)ds (10)

After many calculations:

dE _ 21 k2 Gr?
& rEEew

Q = Energy dissipation factor

Formula 11 is quite difficult to derive since it depends on two adhoc coefficients h, ; Q.
We can try to evaluate % by other means, free to use our own arbitrary coefficients. We




are going to calculate the tidal deformation of Io. From there we will be able to calculate
both it's potential energy and rotational energy from which we will get E(t) and %.

Tidal height

Equation (4) is reminiscent of the hydrostatic equation: —Vp = pg
So we set ﬁbody = —Vp (12) to get:

~P + pp, + pbio — p%(vz sin?(9) = c*¢ (13)

(13) must be supplemented by an equation for the conservation of the volume
(incomprehensibility). [ dQ = §m”3



